Шпаргалка: Шпаргалка по Высшей математике 2
Рассмотрим два произвольных вектора: и
Определение : Ненулевой вектор называется направляющим вектором прямой a, если он лежит либо на прямой a, либо на прямой, параллельной a.
Определение: Углом между ненулевыми векторами называется угол между прямыми, для которых данные вектора являются направляющими. Угол между любым вектором и нулевым вектором по определению считаем равным нулю. Если угол между векторами равен 90°, то такие вектора называются перпендикулярными. Угол между векторами будем обозначать так:
Определение: Скалярным произведением векторов и
называется произведение их длин на косинус угла между ними:
|
Совершенно аналогично, как в планиметрии, доказываются следующие утверждения:
Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны.
Скалярный квадрат вектора , то есть скалярное произведение его самого на себя, равно квадрату его длины.
Скалярное произведение двух векторов и
заданных своими координатами, может быть вычислено по формуле
Перечислим основные свойства скалярного произведения, которые также доказываются аналогично планиметрическим.
Для любых векторов
и
и любого числа λ справедливы равенства :
причем
(переместительный закон).
(распределительный закон).
(сочетательный закон).
Вопрос 2: Свойства непрерывных функций:
Свойства функций, непрерывных в точке
Теорема (локальные свойства непрерывных функций).
- Пусть функция f:E R непрерывна в точке a. Тогда f(x) ограничена в некоторой окрестности точки a.
- Пусть функция f(x) непрерывна в точке a и f(a) 0, то в некоторой окрестности точки a все значения функции положительны или отрицательны вместе с f(a).
- Если f(x), g(x) - непрерывны в точке a, то функции: f(x)+g(x), f(x)g(x), f(x)/g(x) (при g(a) 0 ) непрерывны в точке a.
- Если функция g(x):Y R непрерывна в точке b Y, а функция f:E Y непрерывна в точке a, f(a) = b, тогда композиция g° f также непрерывна в точке a.
Данная теорема следует из определения непрерывности функции и соответствующих свойств предела функции.
Глобальные свойства непрерывных функций
Определение (непрерывность функции на множестве): Функция называется непрерывной на множестве, если она непрерывна в каждой точке множества.
То, что f(x) непрерывна на множестве X обозначается следующим образом: f(x) CX.
Определение: Функция называется непрерывной на отрезке [a,b] , если она непрерывна в каждой внутренней точке этого отрезка и непрерывна справа в точке a и непрерывна слева в точке b.
То, что f(x) непрерывна на отрезке [a,b] обозначается следующим образом: f(x) C[a,b].
Теорема (глобальные свойства непрерывных функций).
- (Первая теорема Вейерштрасса) Если функция f(x) C[a,b], то она ограничена на [a,b] (см. рис. 18).
- (Вторая теорема Вейерштрасса) Если f(x) C[a,b], то она достигает на [a,b] своих точных верхней и нижней граней (рис. 19)
- (Теорема Коши) Если f(x) C[a,b] и f(a)f(b)<0, то существует c [a,b] f(c) = 0 (см.рис. 20).
Замечание.
1). Функции, не являющиеся непрерывными на данном отрезке, могут принимать точную верхнюю и точную нижнюю грани, например функция Дирихле.
2). Если в условиях теоремы отрезок заменить на интервал, то теорема будет неверна, например, функция 1/x на интервале (0,1) непрерывна, но не является ограниченной; функция y = x на интервале (0,1) не достигает своих точных граней.
Билет 6:
Вопрос 1: Векторное и смешанное произведение:
Векторное произведение векторов.