Шпаргалка: Сопротивление материалов 4

В сопротивлении материалов рассматриваются вопросы расчета отдельных элементов конструкций и вопросы расчета некоторых простейших конструкций на прочность, жесткость и устойчивость.

Прочность – способность конструкции, а также ее частей и деталей выдерживать действие внешних нагрузок, не разрушаясь.

Жесткость – способность конструкции и ее элементов сопротивляться изменению своих первоначальных размеров и формы.

Устойчивость – способность конструкции и ее элементов сохранять определенную начальную форму равновесия.

2. Назвать наиболее известных ученых в области науки «Сопротивление материалов»?

Роберт Гук (1635-1705) – английский естествоиспытатель – открыл фундаментальную зависимость между силами и вызываемыми перемещениями.

Симон Дени Пуассон (1781-1840) – французский механик, физик и математик – впервые ввел коэффициент Пуассона, который характеризует свойства материала.

Якоб Бернулли (1684-1705) – швейцарский механик, физик – сформулировал гипотезу плоских сечений: поперечные сечения стержня, плоские до деформации, остаются плоскими и после деформации.

Журавский Д.И. (1824-1891) – выдающийся инженер путей сообщения, строитель мостов – вывел дифференциальную зависимость между изгибающим моментом и поперечной силой, получил формулу для касательных напряжений в поперечных сечениях бруса.

Генрих Рудольф Герц (1857-1894) – немецкий физик – впервые методами теории упругости решил задачу о контактных (местных) напряжениях.

Леонард Эйлер (1707-1783) – математик и механик – вывел формулу Эйлера для критической силы при расчете на устойчивость продольно сжатого стержня.

Феликс Станиславович Ясинский (1856-1899) – русский инженер и механик – вывел эмпирическую формулу для критических напряжений при гибкости стержня меньше предельной (уточнил область применимости формулы Эйлера).

3. Основные расчетные элементы в сопротивлении материалов .

Основными расчетными типовыми элементами, на которые делится целая конструкция, являются стержень, брус, оболочка, пластина, массивное тело, балка, ферма.

Стержень – тело, длина которого существенно превышает характерные размеры поперечного сечения.

Брус – это тот же стержень.

Балка – стержень или брус, работающий на изгиб.

Пластина – тело, у которого толщина существенно меньше двух других размеров.

Оболочка – тело, ограниченное криволинейными поверхностями (искривленная пластина).

Массивное тело – элемент конструкции с размерами одного и того же порядка.

Ферма – стержневая конструкция, работающая только на растяжение или сжатие.

4. Что понимается под внутренними силовыми факторами и как они определяются ?

Под действием внешних нагрузок в сечении конструкции (стержня, балки и т.д.) возникают дополнительные усилия, которые называются внутренними силовыми факторами и которые определяются методом сечения. Это реакция связи одной отсеченной части на другую, реакция опоры на тело, реакция гибкой связи и др. Силы воздействия отсеченной части на рассматриваемый элемент конструкции по отношению к нему являются внешними силами и определяются по общим уравнениям равновесия.

5. Какие виды деформации бруса определяют внутренние силовые факторы ?

С помощью метода сечений определяются внутренние силовые факторы: главный вектор и главный момент раскладываются на составляющие , которые определяют следующие виды деформации:

1) Растяжение (сжатие) – продольная сила , а все остальные составляющие равны нулю.

2) Сдвиг (срез) – поперечная сила или , а все остальные равны нулю.

3) Кручение – крутящий момент , а все остальные равны нулю.

4) Изгиб – когда или , или , а остальные составляющие равны нулю.

5) Сложное сопротивление – когда сочетание каких-либо внутренних усилий не равно нулю.

6. Что понимается под механическим напряжением и какова его размерность ?

Напряжением на данной площадке называется интенсивность внутренних сил, передающихся в точке через выделенную площадку.

Полное напряжение на данной площадке раскладывается на нормальное и касательное напряжения, причем . Напряжение имеет размерность интенсивности нагрузки, т.е. МПа (кгс/см2, тс/м2 ).

1 МПа=106Па=106Н/м2.

7. Привести формулы, связывающие внутренние силовые факторы с напряжениями.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 441
Бесплатно скачать Шпаргалка: Сопротивление материалов 4