Статья: Рамануджан и число 960
Около 75 лет назад гениальный индийский математик придумал невероятно эффективные способы вычисления числа π . Созданные сейчас на той же основе алгоритмы для компьютеров позволяют найти миллионы десятичных знаков числа π
Ч исло π – отношение длины окружности к её диаметру – в 1987 г. было вычислено с беспрецедентной точностью: более ста миллионов десятичных знаков. Этот год ознаменовался также столетием со дня рождения Сринивасы Рамануджана – гениального индийского математика, который бульшую часть своей недолгой и загадочной жизни был оторван от остального математического мира. Эти два события тесно связаны между собой, ибо самые недавние методы вычисления π предвосхищены Рамануджаном, хотя для их реализации пришлось подождать, пока будут разработаны (многими специалистами, в том числе нами) эффективные алгоритмы, новейшие суперкомпьютеры и нетрадиционные методы умножения чисел.
Тяга к вычислению π с миллионами десятичных знаков может показаться довольно бессмысленной, а само это занятие – лишь ареной для установления рекордов. Действительно, уже 39 знаков π достаточно для вычисления окружности, опоясывающей наблюдаемую Вселенную, с погрешностью, не превышающей радиуса атома водорода. Трудно вообразить физические ситуации, которые потребовали бы большей точности. Почему же математики и вычислители не удовлетворятся, скажем, 50 знаками π?
Этомy есть несколько причин. Во-первых, вычисление π стало чем-то вроде эталона: по нему оценивается совершенство и надежность применяемого компьютера. Вдобавок погоня за всё более точным значением π позволяет математикам проникнуть в таинственные и малодоступные закоулки теории чисел. Другая, более простая причина – «потому что оно всегда с нами». И в самом деле, π является неотъемлемой частью математической культуры вот уже более двух с половиной тысячелетий.
Кроме того, всегда есть шанс, что такие вычисления прольют свет на некоторые загадки, связанные с π. Ведь эта универсальная постоянная, несмотря на сравнительно простую природу, не так уж хорошо понята. Например, хотя и доказано, что π – трансцендентное иррациональное число, никому ещё не удалось доказать, что десятичные знаки π распределены случайно, т.е. каждая цифра от 0 до 9 появляется с одинаковой частотой. Возможно, хотя и в высшей степени маловероятно, что, начиная с какого-то места, все остальные знаки π состоят только из 0 и 1 или проявляют какую-то другую закономерность. Более того,число π внезапно появляется в самых неожиданных задачах, не имеющих никакого отношения к окружностям. Так, допустим, что из множества целых чисел наугад выбирается какое-то число. Тогда вероятность того, что оно не имеет повторяющихся (кратных) простых делителей, равна 6/π2 . Как и многие другие выдающиеся математики, Рамануджан был пленён волшебной силой этого числа.
П остроенные недавно алгоритмы для вычисления π придали новый блеск математическим сокровищам, извлечённым благодаря возрождению интереса к работам Рамануджана. Однако большая часть того, что он сделал, всё ещё недоступна исследователям. Основные его работы содержатся в «Тетрадях», где он вёл личные записи, пользуясь собственной терминологией и обозначениями. Ещё огорчительнее для математиков, изучивших «Тетради» Рамануджана, то, что он обычно не записывал доказательств своих теорем. Расшифровка и редактирование «Тетрадей», предпринятые Брюсом К. Берндтом из Иллинойсского университета в Эрбана-Шампейн, только сейчас близятся к завершению.
Насколько нам известно, никто и никогда ещё не брался за работу по математическому редактированию такого объёма и такой трудности. Но усилия наверняка будут вознаграждены. Наследие Рамануджана, содержащееся в «Тетрадях», обещает не только обогатить чистую математику, но и найти применения в разных областях математической физики. Например, Родни Дж. Бакстер из Австралийского национального университета признаёт, что открытия Рамануджана помогли ему решить некоторые задачи статистической физики, относящиеся к поведению системы взаимодействующих частиц, рассматриваемых как твердые шарики в гексагональной решётке наподобие медовых сотов. А Карлос Дж. Морено из Университета г. Нью-Йорка и Фримен Дж. Дайсон из Института высших исследований отметили, что физики начинают применять результаты Рамануджана в теории суперструн.
Фигура Рамануджана как математика тем более удивительна, что его формальное образование было весьма ограниченным. Он родился 22 декабря 1887 г. в небогатой семье касты браминов в местечке Эрод на юге Индии и вырос в городке Кумбаконаме, где его отец служил бухгалтером в небольшой текстильной лавке. Его математический талант был замечен очень рано, и в возрасте 7 лет он получил право на стипендию для учёбы в средней школе Кумбаконама. Он поражал одноклассников тем, что помнил наизусть сложные математические формулы и много знаков числа π.
В 12 лет Рамануджан изучил обширный труд С. Л. Лоуни «Плоская тригонометрия», включая рассмотренные там суммы и произведения бесконечных последовательностей, которым суждено было занять важное место в его последующих работах. Через три года Рамануджан достал книгу «Сборник элементарных результатов чистой математики» (Synopsis of Elementary Results in Pure Mathematics), содержащий свыше 6000 теорем (большей частью без доказательств) и составленный преподавателем Кембриджского университета Дж. Ш. Карром. Две эти книги и стали основой математической подготовки Рамануджана.
В 1903 г. Рамануджан был принят в местный колледж (входивший в состав Мадрасского университета. – Перев.). Однако поглощённый своими математическими изысканиями в ущерб всему остальному, он провалился на экзаменах; то же самое повторилось четыре года спустя в другом колледже в Мадрасе. После женитьбы в 1909 г. Рамануджан на время оставил своё увлечение и попробовал найти работу. К счастью, в 1910 г. по pекомендации многих сочувствующих Рамануджану индийских математиков на него обратил внимание богатый любитель и покровитель математики Р. Рамачандра Рао. Под впечатлением открытий, законспектированных Рамануджаном в его «Тетрадях», Рамачандра Рао предоставил ему ежемесячное пособие.
В 1912 г., желая всё-таки иметь работу, Рамануджан устроился бухгалтером в Трест мадрасского порта, который возглавлял английский инженер Френсис Спринг. Вместе с основателем Индийского математического общества В. Рамасвами Айяром они уговорили Рамануджана сообщить свои результаты трём известным английским математикам. Двое из них, по-видимому, не отозвались. Третьим был Г. Г. Харди из Кембриджского университета, признанный теперь самым выдающимся английским математиком того времени.
Х арди, привыкший к письмам от всякого рода «умников», получив послание Рамануджана 16 января 1913 г., сначала был склонен его проигнорировать. Однако вечером того же дня он решил вместе с коллегой и близким другом Джоном И. Литлвудом поломать голову над списком из 120 формул и теорем, которые Рамануджан приложил к своему письму. Через несколько часов они «вынесли приговор» – перед ними работа не маньяка, а гения. (По составленной Харди позднее «шкале чистого таланта» для математиков Рамануджан получил 100 баллов, Литлвуд – 30, а себе Харди поставил 25. Немецкий математик Давид Гильберт, самая влиятельная фигура в математике того времени, заслужил только 80.) Этот эпизод и то, что за ним последовало, по словам Харди, было единственным романтическим событием его жизни. Он писал, что некоторые формулы Рамануджана его совершенно ошеломили, но тем не менее «они, несомненно, верны, ибо если бы они были неверны, ни у кого не хватило бы воображения их выдумать».
Харди немедленно пригласил Рамануджана приехать в Кембридж. Но серьезные возражения со стороны матери и собственные колебания задержали его отъезд до марта 1914 г. В течение следующих пяти лет Харди и Рамануджан работали совместно в Тринити-Колледже Кембриджского университета. Сочетание блестящего мастерства Харди-аналитика и фантастической интуиции Рамануджана привело к необычайно плодотворному сотрудничеству. Они опубликовали серию основополагающих работ о свойствах различных теоретико-числовых функций, открывавших путь для ответа на вопросы типа: каково наиболее вероятное число простых делителей у данного целого числа? Сколькими способами можно выразить натуральное число в виде суммы меньших натуральных чисел?
В 1917 г. Рамануджан стал действительным членом Лондонского королевского общества и профессором Кембриджского университета. Впервые индиец был удостоен того и другого звания. Слава его росла, однако здоровье резко ухудшилось. В военное время, когда в Великобритании остро ощущалась нехватка продовольствия, трудно было придерживаться вегетарианской диеты, которую он строго соблюдал. Рамануджан не раз попадал в больницу, но поток его новых результатов не иссякал. В 1919 г., когда война закончилась и путешествия за границу снова стали безопасными, он вернулся в Индию. Ставший кумиром молодых индийских интеллектуалов 32-летний Рамануджан умер 26 апреля 1920 г., как тогда думали, от туберкулёза, но, скорее, как считают теперь, от острого недостатка витаминов. [Это было в 1987 г. В 1994 г. произошёл новый поворот. Проанализировав симптомы и историю болезни Рамануджана Д. Янг поставил свой диагноз: гепатический амёбиаз; см. подробности на второй странице статьи Б. Берндта «An Overview of Ramanujan's Notebooks». Кстати, эту весьма интересную публикацию можно рассматривать как продолжение статей В.И.Левина. – E.G.A.] До конца преданный математике Рамануджан и в последние месяцы жизни, измученный болезнью, продолжал свой труд и создал замечательную работу, записанную в его так называемой «Потерянной тетради».
Р езультаты Рамануджана, касающиеся числа π, связаны большей частью с его исследованиями модулярных уравнений – темы, наиболее подробно раскрытой в «Тетрадях». Грубо говоря, модулярное уравнение – это алгебраическое соотношение между функцией от некоторой переменной x, т.е. f (x), и той же функцией от переменной x, возведенной в некоторую целую степень, например f (x2 ), f (x3 ) или f (x4 ). Эта целая степень задает «порядок» модулярного уравнения. Простейшим модулярным уравнением является уравнение 2-го порядка
f (x) = | 2√f (xІ) 1 + f (xІ) |
. |
Конечно, не всякая функция удовлетворяет какому-нибудь модулярному уравнению. Но существует класс функций, обладающих этим свойством. Они называются модулярными функциями. Кроме того, модулярное уравнение выполняется только при определённых значениях x, а именно тех, которые являются «решениями» данного уравнения.
Рамануджан не имел себе равных в умении «откапывать» решения модулярных уравнений, удовлетворяющие также некоторым другим условиям. Такие решения называются сингулярными. Оказывается, поиски сингулярных решений в некоторых случаях приводят к числам, натуральные логарифмы которых совпадают с π (умноженным на константу) в поразительно большом числе десятичных знаков. Виртуозно пользуясь этим общим приемом, Рамануджан построил для приближения π много замечательных бесконечных рядов и одночленных формул. Некоторые из них приведены в его единственной формальной статье на эту тему «Модулярные уравнения и приближения к π», опубликованной в 1914 г.
Своими попытками вычислять π Рамануджан отдал дань древней традиции. Уже в самых ранних индо-европейских цивилизациях было известно, что площадь круга пропорциональна квадрату его радиуса, а длина окружности пропорциональна её диаметру. Правда, не совсем ясно, когда впервые было осознано, что отношение длины любой окружности к её диаметру и отношение площади любого круга к квадрату его радиуса равны одной и той же постоянной, которую принято обозначать символом π. (Сам этот символ был введен гораздо позднее – в 1706 г. английским математиком-любителем Уильямом Джонсоном и стал широко употребляться благодаря поддержке крупнейшего математика XVIII в. Леонарда Эйлера.)
В еличайший математик древности Архимед из Сиракуз строго доказал равенство двух указанных отношений в своем трактате «Измерение круга». Он вычислил и приближённое значение π, причём на основе математических принципов, а не прямых измерений длины окружности, площади круга и диаметра. Архимед вписывал в окружность и описывал около неё правильные многоугольники (т.е. многоугольники со сторонами одинаковой длины). Диаметр окружности принимался за единицу, а периметры описанного и вписанного многоугольников рассматривались как приближения соответственно сверху и снизу к длине окружности, которая в данном случае численно совпадала с π (см. вкладку [1]).
Этот метод приближения π не был новшеством: ещё раньше вписывать многоугольники с возрастающим числом сторон предложил Антифон, а его современник Брисон из Гераклеи дополнительно ввёл описанные многоугольники. Новшеством был выполненный Архимедом правильный расчет результата удвоения числа сторон как вписанного, так и описанного многоугольников. Тем самым он разработал процедуру, повторение которой достаточное число раз в принципе позволяет вычислить π с любым количеством знаков. (Следует заметить, что периметр правильного многоугольника легко вычисляется с помощью простых тригонометрических функций: синуса, косинуса и тангенса, однако во времена Архимеда, т.е. в III в. до н.э., эти функции ещё не были полностью изучены и вычисление периметров было далеко не таким легким делом, как может сейчас показаться.
Архимед начал с вписанного и описанного шестиугольников и получил неравенство 3 < π < 2Ö3. Четырежды удвоив число сторон (т.е. доведя его до 96), он сузил интервал для π: 310 /71 < π < 31 /7 и получил приближённое значение p » 3,14. Есть некоторые основания предполагать, что дошедший до нас текст трактата «Измерение круга» представляет собой часть более обширного труда, в котором Архимед объясняет, как, начав с десятиугольников и применив шесть раз операцию удвоения, он получил приближение с пятью знаками: p » 3,1416. Сам по себе метод Архимеда прост, но при отсутствии готовых таблиц тригонометрических функций требует извлечения корней; выполнение этой операции вручную занимает довольно много времени. Кроме того, приближения сходятся к π очень медленно: с каждой итерацией погрешность уменьшается лишь вчетверо. Тем не менее до середины XVII в. все попытки европейских учёных вычислить π так или иначе опирались на этот метод. Голландский математик XVI в. Лудольф ван Цейлен посвятил вычислению π большую часть своей научной деятельности. К концу жизни он нашёл приближение с 32 десятичными знаками, вычислив периметры вписанного и описанного многоугольников с 262 (т.е. порядка 1018 ) сторонами. Говорят, полученное им значение π, которое в некоторых европейских странах называют в его честь числом Лудольфа, высечено на его надгробном камне.
Периметр описанного многоугольника Pc = n tg(180°/n) |
Периметр --> ЧИТАТЬ ПОЛНОСТЬЮ <-- К-во Просмотров: 368
Бесплатно скачать Статья: Рамануджан и число 960
|