Статья: Сопряжённые числа
Рис. 1. Проходят ли эти гиперболы
через бесконечное число узлов клетчатой бумаги?
Найти ответы на эти вопросы нам поможет число 1 + √2. Закономерность, позволяющая получать всё новые и новые решения (x;y), указана в таблице:
n | (1 + √2)n | xn | yn | xn 2 – 2yn 2 | (1 – √2)n |
1 | 1 + √2 | 1 | 1 | 1 – 2 = –1 | 1 – √2 |
2 | 3 + 2√2 | 3 | 2 | 9 – 8 = 1 | 3 – 2√2 |
3 | 7 + 5√2 | 7 | 5 | 49 – 50 = –1 | 7 – 5√2 |
4 | 17 + 12√2 | 17 | 12 | 289 – 288 = 1 | 17 – 12√2 |
5 | 41 + 29√2 | 41 | 29 | 1681 – 1682 = –1 | 41 – 29√2 |
... | ... | ... | ... | ... | ... |
Какой будет шестая строчка?
Видно, что коэффициенты xn , yn в числе
xn + yn √2 = (1 + √2)n
будут давать нужную пару. Доказать это поможет колонка таблицы из сопряжённых чисел (мы снова применяем (4)):
xn – yn √2 = (1 – √2)n .
Перемножив два последних равенства, получим
x |
2 n | – 2y |
2 n | = (–1)n , |
и интересующее нас выражение попеременно равно то 1, то –1. Складывая и вычитая эти же два равенства, мы получим явное выражение для xn и yn :
xn = |
(1 + √2)n + (1 – √2)n 2 | , |
yn = |
(1 + √2)n – (1 – √2)n 2√2 | . |
Можно ли в решении этой задачи про целые числа обойтись без иррациональных чисел 1 + √2 и 1 – √2? Теперь, зная ответ, мы можем легко выразить (xn+1 ;yn+1 ) через предыдущую пару (xn ;yn ): из xn+1 + yn+1 √2 = (xn + yn √2)(1 + √2) вытекает
xn+1 = xn + 2yn , yn+1 = xn + yn . | (6) |
До этого рекуррентного соотношения можно было, видимо, догадаться по нескольким первым решениям, а потом проверить, что
|x |
2 n | – 2y |
2 n | | = |x |
2 n+1 | – 2y |
2 n+1 | |. |
Добавив начальное условие x1 = 1, y1 = 1, отсюда (по индукции) можно было бы заключить, что |xn 2 – 2yn 2 | = 1 для любого n. Далее, выразив обратно (xn ;yn ): через (xn+1 ;yn+1 ), «методом спуска» ([8]) можно доказать, что найденной серией исчерпываются все решения уравнения (5) в натуральных числах (x;y). Подобным же образом решается любое «уравнение Пелля» x2 – dy2 = c (а к уравнениям такого типа сводится любое квадратное уравнение в целых числах x, y), но у исходного уравнения может быть несколько серий решений ([7]).