Статья: Сопряжённые числа
Именно такое уравнение получилось бы в качестве характеристического, если бы мы применили упомянутую мелким шрифтом в конце предыдущего раздела общую теорию к исследованию линейного преобразования
(qn ; rn ; sn ; tn ) → (qn+1 ; rn+1 ; sn+1 ; tn+1 )
в предыдущей задаче. Заметим, кроме того, что мы на самом деле получили уравнение наименьшей степени (с целыми коэффициентами) с корнем λ1 = 1 + √2 + √3. Попробуйте это доказать!
Алгебраическое послесловие
Мы разобрали несколько примеров, в которых затрагивались пограничные вопросы алгебры, математического анализа и теории чисел. (Каждому направлению, которое мы наметили, можно было бы посвятить более подробную статью в «Кванте»!) В заключение покажем ещё, как можно смотреть на основных героев статьи — «сопряжённые числа» — с чисто алгебраической точки зрения.
Предположим, что у нас есть множество P чисел (или выражений с буквами, или ещё каких-то элементов), с которыми можно выполнять четыре действия арифметики с соблюдением обычных арифметических правил. Такое множество называется полем; поля образуют, например, рациональные и действительные числа. Если в поле P не разрешимо, скажем, уравнение x2 – d = 0, то можно расширить его, рассматривая элементы вида p + q√d, где p, q P, a √d — новый символ, который при умножении сам на себя дает d, т.е. √d·√d = d, так что
(p + q√d)·(p' + q'√d) = (pp' + qq'd) + (pq' + qp')√d.
При d = –1 расширением поля вещественных чисел получаются комплексные числа.
В новом поле P1 — «квадратичном расширении» поля P — есть интересное отображение λ = p + q√d → λ = p – q√d (своеобразная «алгебраическая симметрия»), называемое сопряжением, с такими свойствами:
Все элементы старого поля P переходят в себя;
Все равенства, содержащие арифметические операции, при этом отображении сохраняются:
λ + μ = λ + μ; λ · μ = λ · μ; | (10) |
Это отображение является частным случаем так называемых автоморфизмов Галуа расширения P1 поля P.
В задачах 8 и 9 мы видели пример «двукратного» расширения — присоединения √2 и затем √3, — в результате которого получилось поле с бо́льшим количеством автоморфизмов Галуа: кроме тождественного отображения, их уже три
(√2 → –√2, √3 → √3;√2 → √2, √3 → –√3;√2 → –√2, √3 → –√3),
и их «взаимодействие» устроено так же, как во множестве самосовмещений прямоугольника.
Оказывается, к основному полю можно присоединять корни любого алгебраического уравнения. Автоморфизмы возникающего нового поля — предмет одной из красивейших ветвей алгебры XIX–XX века, теории Галуа, которая позволяет, в частности, исследовать вопрос о разрешимости уравнений в радикалах ([13], [14]).
Мы закончим эту статью набором задач, в основном продолжающих уже затронутые темы, но требующих иногда и новых соображений, и обещанным списком литературы.
Список литературы
1. Л.Курляндчик, А.Лисицкий. «Суммы и произведения» («Квант», 1978, №10). назад к тексту
2. Второе решение задачи М514 («Квант», 1979, №5, с.26). назад к тексту
3. Р.Нивен. «Числа рациональные и иррациональные» (М., «Мир», 1966). назад к тексту
4. Д.Фукс, М.Фукс. «О наилучших приближениях» («Квант», 1971, №6, №11) и «Рациональные приближения и трансцендентность» («Квант», 1973, №1). назад к тексту
5. Н.Васильев, В.Гутенмахер. «Прямые и кривые» (М., «Наука», 1978), с.103–105. назад к тексту
6. А.Н.Маркушевич. «Ряды» (М., «Наука», 1979). назад к тексту
7. Избранные задачи из журнала American Mathematical Monthly (М., «Мир», 1977), с.560–561. назад к тексту
8. Л.Курляндчик, Г.Розенблюм. «Метод бесконечного спуска» («Квант», 1978, №1). назад к тексту
9. В.Березин. «Филлотаксис и последовательность Фибоначчи», («Квант», 1979, №5, с.53). назад к тексту
10. Н.Н.Воробьев. «Числа Фибоначчи» (Популярные лекции по математике, вып.6) (М., «Наука», 1978). назад к тексту
11. А.И.Маркушевич. «Возвратные последовательности» (Популярные лекции но математике, вып.1) (М., «Наука», 1978). назад к тексту
12. Л.И.Головина. «Линейная алгебра и некоторые её приложения» (М., «Наука», 1979). назад к тексту