Статья: Тождественные преобразования алгебраических выражений
Формулы корней квадратного трехчлена ax2 + bx + c
Теорему Виета х1 и х2 — корни ax2 + bx + c в том и только том случае, если
Разложение квадратного трехчлена ax2 + bx + c на множители.
Если х1, х2 — корни трехчлена, то ax2 + bx + c = а(х–х1)(х–х2)
Рассмотрим несколько примеров тождественных преобразований целых А.В.
Пример 1. Разложить многочлен на множители
Решение:
Задача заключается в том, чтобы сгруппировать слагаемые так, чтобы они имели общий множитель, который можно будет затем вынести за скобки, прейдя от суммы к произведению.
Итак.
Объединим крайние слагаемые в одну группу, а средние в другую:
2) Вынесем за скобки во второй группе общий множитель 2ab, получим:
3) Вынесем за скобки общий множитель первого и второго слагаемого (a2 + b2):
Полученное выражение есть произведение двух сомножителей, а значит многочлен f(a,b) разложили на множители.
Ответ:
Пример 2. Разложить на множители f(a)= a3 – 7а2 + 7а +15
Решение:
Как бы мы не группировали слагаемые мы не получим группы слагаемых, имеющие одинаковые множители. Поэтому, сначала преобразуем сами слагаемые.
–7а2 = –3а2 – 4а2
7а = 12а – 5а
f (a) = a3 – 7а2 + 7а +15 = a3 – 3а2 – 4а2 + 12а – 5а +15
3) Сгруппируем слагаемые попарно, и из каждой скобки вынесем общий множитель.