Статья: Тождественные преобразования алгебраических выражений

при а¹–3, а¹–2, а¹–1.

Пример 3. Упростить выражение

Решение:

Найдем область определения:

х–у¹0 Þ х¹у

х+у¹0 Þ х¹–у

х2–у2¹0 Þ х¹у, х¹–у

х2+у2¹0 Þ х¹0, у¹0.

Итак, область определения х¹0, у¹0, х¹у, х¹–у.

Приведем дроби, стоящие в скобках к общему знаменателю и воспользуемся формулами сокращенного умножения

Воспользуемся правилом деления дробей:

Ответ: при х¹0, у¹0, х¹у, х¹–у.

Пример 4. Упростить выражение

Найдем область определения выражения:

а¹0 Þ

b+с¹0 Þ b¹–с

Þ b+с–а¹0 Þ b+с¹а

а¹0 и b+с¹0

2bс¹0 Þ b¹0, с¹0.

Таким образом, область определения: а¹0, b¹0, с¹0, b¹–с, b+с¹а.

Приведем дроби, стоящие в числителе и знаменателе первой дроби, а также сумму, стоящую в скобках, к общим знаменателям

Воспользуемся правилом деления дробей и приведем четырехэтажную дробь к двухэтажной. В числителе второй дроби выделим полный квадрат суммы b и с

Числитель второй дроби, воспользовавшись формулой разности квадратов, разложим на множители

К-во Просмотров: 464
Бесплатно скачать Статья: Тождественные преобразования алгебраических выражений