Статья: Целая и дробная части действительного числа

В различных вопросах теории чисел, математического анализа, теории рекурсивных функций и в других вопросах математики используются понятия целой и дробной частей действительного числа.

В программу школ и классов с углубленным изучением математики включены вопросы, связанные с этими понятиями, но на их изложение в учебнике алгебры для 9 класса [1] отведено всего 34 строки. Рассмотрим более подробно эту тему.

Определение 1

Целой частью действительного числа х называется наибольшее целое число, не превосходящее х.

Целая часть числа обозначается символом [х ] и читается так: “целая часть х” или: “целая часть от х ”. Иногда целая часть числа обозначается Е(х) и читается так: “антье х ” или “ антье от х ”. Второе название происходит от французского слова entiere – целый.

Пример.

Вычислить [x], если х принимает значения:

1,5; 3; -1.3; -4.

Решение

Из определения [x] следует:

[1,5] = 1, т.к. 1Z, 1 1,5

[ 3 ] = 3, т.к. 3Z, 3 3

[-1,3]=-2, т.к. –2Z, -2 -1,3

[-4] =-4, т.к. -4Z, -4-4.

Свойства целой части действительного числа.

1°. [ x ] = x , если хZ

2°. [ x ] x  [ x ] + 1

3°. [ x + m ] = [ x ] + m , где m Z

Рассмотрим примеры использования этого понятия в различных задачах.

Пример 1

Решить уравнения:

1.1[ x ] = 3

[ x + 1,3 ] = - 5

[ x + 1 ] + [ x – 2] – [x + 3 ] = 5

1.4 [ x ]- 7 [ x ] + 10 = 0

Решение

1.1 [ x ] = 3. По свойству 2° данное уравнение равносильно неравенству 3 х  4

Ответ : [ 3 ; 4 )

[ x + 1,3 ] = - 5. По свойству 2° :

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 653
Бесплатно скачать Статья: Целая и дробная части действительного числа