Учебное пособие: Методические указания и контрольные задания для студентов-заочников

,

- условие параллельности,

- условие перпендикулярности.

Здесь и - направляющие векторы прямых.

3. Пусть прямые L1 и L2 заданы уравнениями с угловыми коэффициентами

у = k1 x+b1 и y = k2 x + b2 , где , а α1 и α2 – углы наклона прямых к оси Ох, то для угла φ между прямыми справедливо равенство: φ = α2 - α1 . Тогда

.

Условие параллельности имеет вид: k1 =k2 ,

условие перпендикулярности – k2 =-1/k1 , поскольку при этом tgφ не существует.

Расстояние от точки до прямой.

Рассмотрим прямую L и проведем перпендикуляр ОР к ней из начала координат (предполагаем, что прямая не проходит через начало координат).

Расстояние от точки до прямой определяется так:

Замечание. Для того, чтобы привести общее уравнение прямой к нормальному виду, нужно умножить его на число , причем знак выбирается противоположным знаку свободного члена С в общем уравнении прямой. Это число называется нормирующим множителем.

Пример. Найдем расстояние от точки А(7,-3) до прямой, заданной уравнением

3х + 4у + 15 = 0. А² + B²=9+16=25, C=15>0, поэтому нормирующий множитель равен

-1/5, и нормальное уравнение прямой имеет вид: Подставив в его левую часть вместо х и у координаты точки А, получим, что ее отклонение от прямой равно

Следовательно, расстояние от точки А до данной прямой равно 4,8.

Расстояние между двумя точками М(х,у,z) и N( х11 ,z1 ) выражается формулой

d(MN) = (х1 – x)² + (у1 – y)² + (z1 – z)²

Плоскость в пространстве.

A(x - x0 ) + B(y - y0 ) + C(z - z0 ) = 0.

уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.

После приведения подобных можно записать уравнение в виде:

Ax + By + Cz + D = 0,

где D = -Ax0 - By0 - Cz0 . Это линейное уравнение относительно трех переменных называют общим уравнением плоскости.

уравнение плоскости в отрезках.. Параметры а, b и с равны величинам отрезков, отсекаемых плоскостью на координатных осях.

Угол между плоскостями. Условия параллельности и перпендикулярности плоскостей.

К-во Просмотров: 380
Бесплатно скачать Учебное пособие: Методические указания и контрольные задания для студентов-заочников