Учебное пособие: Методы коллокаций и Галеркина
(2.68)где
Это дает алгебраическую систему уравнений для определения коэффициентов a k . Найдя из нее коэффициенты, получим приближенное решение.
Если оператор нелинейный, то система (2.68) тоже будет нелинейной и решение ее весьма затруднительно. Если же оператор линейный, то система (2.68) также будет линейной и можно решать задачу с большим числом коэффициентов.
В методе Галеркина функция должна удовлетворять краевым условиям (2.63). Поэтому можно выбрать в виде
,
и коэффициенты найти как решение системы уравнений
Таким же образом отыскиваются функции . Выберем, например, полную систему в виде многочленов последовательных степеней:
.
Коэффициенты найдем из однородных краевых условий (2.65)
(2.65а )
при всех .
Так, для и условия (2.65а ) принимают вид:
В этой системе из двух уравнений три неизвестных: и . Одну из них можно выбрать произвольно, положив, например, . Аналогично отыскивают коэффициенты для .
Для простых условий вида то есть функции можно вычислять по правилу
или
Отметим, что при нелинейном краевом условии вида, например, линейная комбинация (2.64) с произвольными коэффициентами ak уже не будет удовлетворять этому краевому условию. Поэтому метод Галеркина применим только к задачам с линейными краевыми условиями, хотя допустим и нелинейный оператор L .
Пример 1. Методом Галеркина найти приближенное решение уравнения
с условиями
В качестве системы базисных функций выберем
Ограничимся четырьмя функциями , то есть k = 0, 1, 2, 3. Решение будем искать в виде