Учебное пособие: Методы решения краевых задач, в том числе "жестких" краевых задач

1 Введение

На примере системы дифференциальных уравнений цилиндрической оболочки ракеты – системы обыкновенных дифференциальных уравнений 8-го порядка (после разделения частных производных).

Система линейных обыкновенных дифференциальных уравнений имеет вид:

Y(x) = A(x) ∙ Y(x) + F(x),

где Y(x) – искомая вектор-функция задачи размерности 8х1, Y(x) – производная искомой вектор-функции размерности 8х1, A(x) – квадратная матрица коэффициентов дифференциального уравнения размерности 8х8, F(x) – вектор-функция внешнего воздействия на систему размерности 8х1.

Здесь и далее вектора обозначаем жирным шрифтом вместо черточек над буквами

Краевые условия имеют вид:

U∙Y(0) = u,

V∙Y(1) = v,

где

Y(0) – значение искомой вектор-функции на левом крае х=0 размерности 8х1, U – прямоугольная горизонтальная матрица коэффициентов краевых условий левого края размерности 4х8, u – вектор внешних воздействий на левый край размерности 4х1,

Y(1) – значение искомой вектор-функции на правом крае х=1 размерности 8х1, V – прямоугольная горизонтальная матрица коэффициентов краевых условий правого края размерности 4х8, v – вектор внешних воздействий на правый край размерности 4х1.

В случае, когда система дифференциальных уравнений имеет матрицу с постоянными коэффициентами A=const, решение задачи Коши имеет вид [Гантмахер]:

Y(x) = e∙ Y(x) + ee∙ F(t) dt,

где

e= E + A(x-x) + A (x-x)/2! + A (x-x)/3! + …,

где E это единичная матрица.

Матричная экспонента ещё может называться матрицей Коши или матрициантом и может обозначаться в виде:

K(x←x) = K(x - x) = e.

Тогда решение задачи Коши может быть записано в виде:

Y(x) = K(x←x) ∙ Y(x) + Y*(x←x) ,

где Y*(x←x) = ee∙ F(t) dt это вектор частного решения неоднородной системы дифференциальных уравнений.

2 Случай переменных коэффициентов

Этот вариант рассмотрения переменных коэффициентов проверялся в кандидатской диссертации.

Из теории матриц [Гантмахер] известно свойство перемножаемости матричных экспонент (матриц Коши):

e= e∙ e ∙ … ∙ e ∙ e,

K(x←x) = K(x←x) ∙ K(x←x) ∙ … ∙ K(x←x) ∙ K(x←x).

В случае, когда система дифференциальных уравнений имеет матрицу с переменными коэффициентами A=A(x), решение задачи Коши предлагается искать при помощи свойства перемножаемости матриц Коши. То есть интервал интегрирования разбивается на малые участки и на малых участках матрицы Коши приближенно вычисляются по формуле для постоянной матрицы в экспоненте. А затем матрицы Коши, вычисленные на малых участках, перемножаются:

K(x←x) = K(x←x) ∙ K(x←x) ∙ … ∙ K(x←x) ∙ K(x←x),

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 272
Бесплатно скачать Учебное пособие: Методы решения краевых задач, в том числе "жестких" краевых задач