Учебное пособие: Методы решения краевых задач, в том числе "жестких" краевых задач
K(x←x) = K(x←x) ∙ K(x←x) ∙ … ∙ K(x←x) ∙ K(x←x)
и запишем выражения для матриц Коши, например, в виде:
K(0←x) = K(0←x) ∙ K(x←x) ∙ K(x←x),
K(1←x) = K(1←x) ∙ K(x←x) ∙ K(x←x) ∙ K(x←x),
Тогда перенесенные краевые условия можно записать в виде:
[ U∙ K(0←x) ∙ K(x←x) ∙ K(x←x) ] ∙ Y(x) = u - U∙Y*(0←x) ,
[ V∙ K(1←x) ∙ K(x←x) ∙ K(x←x) ∙ K(x←x) ] ∙ Y(x) = v - V∙Y*(1←x)
или в виде:
[ U∙ K(0←x) ∙ K(x←x) ∙ K(x←x) ] ∙ Y(x) = u* ,
[ V∙ K(1←x) ∙ K(x←x) ∙ K(x←x) ∙ K(x←x) ] ∙ Y(x) = v* .
Тогда рассмотрим левое перенесенное краевое условие:
[ U∙ K(0←x) ∙ K(x←x) ∙ K(x←x) ] ∙ Y(x) = u* ,
[ U∙ K(0←x) ] ∙ { K(x←x) ∙ K(x←x) ∙ Y(x) } = u* ,
[ матрица ] ∙ { вектор } = вектор .
Эту группу линейных алгебраических уравнений можно подвергнуть построчному ортонормированию, которое сделает строчки [матрицы] ортонормированными, {вектор} затронут не будет, а вектор получит преобразование. То есть получим:
[ U∙ K(0←x) ] ∙ { K(x←x) ∙ K(x←x) ∙ Y(x) } = u* .
Далее последовательно можно записать:
[[ U∙ K(0←x) ] ∙ K(x←x) ] ∙ { K(x←x) ∙ Y(x) } = u* ,
[ матрица ] ∙ { вектор } = вектор .
Аналогично и эту группу линейных алгебраических уравнений можно подвергнуть построчному ортонормированию, которое сделает строчки [матрицы] ортонормированными, {вектор} затронут не будет, а вектор получит преобразование. То есть получим:
[[ U∙ K(0←x) ] ∙ K(x←x) ] ∙ { K(x←x) ∙ Y(x) } = u* ,
Далее аналогично можно записать:
[[[ U∙ K(0←x) ] ∙ K(x←x) ] ∙ K(x←x) ] ∙ { Y(x) } = u* ,
[ матрица ] ∙ { вектор} = вектор .
Аналогично и эту группу линейных алгебраических уравнений можно подвергнуть построчному ортонормированию, которое сделает строчки [матрицы] ортонормированными, {вектор} затронут не будет, а вектор получит преобразование. То есть получим:
[[[ U∙ K(0←x) ] ∙ K(x←x) ] ∙ K(x←x) ] ∙ Y(x) = u* .
Аналогично можно проортонормировать матричное уравнение краевых условий и для правого края независимо от левого края.
Далее проортонормированные уравнения краевых условий:
[ U∙ K(0←x) ] ∙ Y(x) = u* ,