Учебное пособие: Методы решения краевых задач, в том числе "жестких" краевых задач

Подставляем это выражение для Y(0) в краевые условия левого края и получаем:

U∙Y(0) = u,

U∙[ K(0←x) ∙ Y(x) + Y*(0←x) ] = u,

[ U∙ K(0←x) ] ∙ Y(x) = u - U∙Y*(0←x) .

Или получаем краевые условия, перенесенные в точку x:

U∙ Y(x) = u ,

где U= [ U∙ K(0←x) ] и u = u - U∙Y*(0←x) .

Далее запишем аналогично

Y(x) = K(x←x) ∙ Y(x) + Y*(x←x)

И подставим это выражение для Y(x) в перенесенные краевые условия точки x

U∙ Y(x) = u,

U∙ [ K(x←x) ∙ Y(x) + Y*(x←x) ] = u ,

[ U∙ K(x←x) ] ∙ Y(x) = u- U∙ Y*(x←x) ,

Или получаем краевые условия, перенесенные в точку x:

U∙ Y(x) = u ,

где U= [ U∙ K(x←x) ] и u = u - U∙ Y*(x←x) .

И так в точку x переносим матричное краевое условие с левого края и таким же образом переносим матричное краевое условие с правого края и получаем:

U∙ Y(x) = u ,

V∙ Y(x) = v .

Из этих двух матричных уравнений с прямоугольными горизонтальными матрицами коэффициентов очевидно получаем одну систему линейных алгебраических уравнений с квадратной матрицей коэффициентов:

∙ Y(x) = .

А в случае «жестких» дифференциальных уравнений предлагается применять построчное ортонормирование матричных краевых условий в процессе их переноса в рассматриваемую точку. Для этого формулы ортонормирования систем линейных алгебраических уравнений можно взять в [Березин, Жидков].

То есть, получив

U∙ Y(x) = u,

применяем к этой группе линейных алгебраических уравнений построчное ортонормирование и получаем эквивалентное матричное краевое условие:

U∙ Y(x) = u.

И теперь уже в это проортонормированное построчно уравнение подставляем

Y(x) = K(x←x) ∙ Y(x) + Y*(x←x) .

И получаем

К-во Просмотров: 279
Бесплатно скачать Учебное пособие: Методы решения краевых задач, в том числе "жестких" краевых задач