Учебное пособие: Перпендикуляр

–Какие факты можно отнести в эту часть?

– Правильно. Итак, тема «Перпендикулярность прямых и плоскостей» появилась по аналогии с темой «Перпендикулярность прямых на плоскости». Я напомню вам, что многие определения и теоремы вы формулировали сами по аналогии с известными определениями в планиметрии или обобщая их – заменяя прямые на плоскости, лучи на полуплоскости. При доказательстве теорем в каждом последующем блоке использовались теоремы предыдущего блока <показывает столбцы> и теоретические положения темы «Параллельность прямых и плоскостей». Однако и перпендикулярность работает на параллельность – мы получили новые свойства и признаки параллельности прямых и параллельности плоскостей. Посмотрите на рисунки 7 и 8. Например, сформулируйте признак параллельности прямых по рисунку 7.

–Хорошо. Продолжите предложение: «Две прямые в пространстве перпендикулярны, если …».

<Аналогичная работа проводится для оставшихся двух случаев>

– Перпендикулярность прямых, прямой и плоскости, двух плоскостей.

– Две прямые в пространстве называются перпендикулярными, если угол между ними равен 900 .

– Они могут пересекаться и скрещиваться.

– Лемму о перпендикулярности двух параллельных прямых третьей.

<Формулируют>

– Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

– Признак перпендикулярности прямой и плоскости <формулирует>.

– Теорема о связи между параллельностью прямых и их перпендикулярностью к плоскости <формулирует>.

– Теорема о связи между параллельностью двух плоскостей и их перпендикулярностью к прямой <формулирует>.

– Потому что она доказывается с помощью определения прямой перпендикулярной к плоскости.

– Две пересекающиеся плоскости называются перпендикулярными, если угол между ними равен 900 .

–Признак перпендикулярности двух плоскостей.

- Две прямые в пространстве параллельны, если они перпендикулярны некоторой плоскости.

Две прямые в пространстве перпендикулярны, если

- одна из них перпендикулярна некоторой прямой, а другая ей параллельна;

- одна из них перпендикулярна некоторой плоскости, а другая лежит в этой плоскости;

- одна из них является наклонной к некоторой плоскости, а другая лежит в этой плоскости и перпендикулярна проекции первой прямой.

<Ученики формулируют следующие эвристики:

Прямая и плоскость в пространстве перпендикулярны, если

- прямая перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости;

- прямая параллельна некоторой другой прямой, перпендикулярной данной плоскости;

- данная плоскость параллельна некоторой другой плоскости, перпендикулярной данной прямой.

Две плоскости перпендикулярны, если одна из этих плоскостей содержит прямую, перпендикулярную второй плоскости. >

–Давайте теперь поработаем с задачей. Рассмотрим следующую конфигурацию: дан равносторонний треугольник АВС, через середину О стороны АВ проведен перпендикуляр ОD к плоскости АВС, построены отрезки DА, DВ, DС, ОС. Запишем что дано. Задание 1: найдите пары перпендикулярных прямых, прямой и плоскости, двух плоскостей, выделите теоретический базис доказательства.

– Работаем в парах. Первый ряд ищет пары перпендикулярных прямых, второй – перпендикулярных прямой и плоскости, третий ряд – пары перпендикулярных плоскостей. Даю вам 5 минут.

К-во Просмотров: 353
Бесплатно скачать Учебное пособие: Перпендикуляр