Учебное пособие: Теория принятия решений
где с – некое выбранное ЛПР положительное число.
Следует иметь в виду, что оптимальное решение зависит от выбора с.
Критерий Гермейера применяется и для оптимизации величины прибыли (как в нашей задаче), т.е. для положительных матриц.
В общем случае Гермейер предложил ввести в рассмотрение матрицу с такими элементами:
Построим новую матрицу для нашего примера:
Далее к этой матрице применяется принцип максимина. Показатель эффективности стратегии Аi при этом находится по формуле:
Таким образом, новую матрицу необходимо дополнить справа еще одним столбцом, в который нужно внести наименьшие значения элементов каждой строки.
Затем из элементов добавленного столбца нужно выбрать наибольший. Строка, в которой он стоит и будет оптимальной стратегией.
В нашем случае наибольший элемент в добавленном столбце 16 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор должен выбрать для вложения третий проект.
Ответ А3 .
2.5 Критерий Ходжа-Лемана
Критерий Ходжа-Лемана привносит фактор определенной субъективности при принятии решения.
Решение принимается в условиях риска. Однако у ЛПР есть некое недоверие к распределению вероятностей состояний окружающей среды. Поэтому ЛПР вводит некий "коэффициент доверия" l к вероятностям состояний окружающей среды (0 £l£ 1). Чтобы сильно не рисковать, обычно таким коэффициентом берут 0,4. Этот коэффициент ещё называют уровнем оптимизма.
Показатель эффективности стратегии Аi по критерию Ходжа-Лемана находится по формуле:
Z = ,
#Для случая оптимизации потерь критерий будет таким:
Z = #
Таким образом, исходную матрицу необходимо дополнить справа еще тремя столбцами. В первый нужно внести значения математических ожиданий всех стратегий, умноженных на уровень оптимизма l = 0,4. Во второй нужно внести значения наименьших элементов всех строк, умноженных на уровень пессимизма 1 – l = 1 – 0,4 = 0,6 . В третий добавленный столбец внесем сумму значений первых двух добавленных столбцов:
Пример вычислений для первой строки:
= 0,4 (0,33 + 0,27 + 0,153 + 0,115 + 0,256) = 0,4 5,75 = 2,3
= 0,6 3 = 1,8
Z1 = 2,3 + 1,8 = 4,1
Далее в добавленном столбце нужно найти наибольший элемент. Строка, в которой он стоит и будет оптимальной стратегией.
В нашем случае наибольший элемент 4,78 (в матрице он выделен). Таким образом, в нашем примере оптимальной стратегией будет А3, т.е. инвестор для вложения должен выбрать третий проект.
Ответ А3 .
Раздел 3. Принятие решения в условиях неопределенности
3.1 Принцип максимина
Решим поставленную выше задачу при принятии решения в условиях неопределенности. В таких условиях также нет единой трактовки понятия наилучшего исхода. Поэтому данную задачу тоже будем решать с помощью различных критериев.
Принцип максимина (критерий Вальда) предполагает полное недоверие ЛПР известным вероятностям состояний окружающей среды. Либо же вероятности состояний окружающей среды считаются неизвестными. Следовательно, данная задача – это задача принятия решения в условиях неопределенности.
При неопределенности выбор наилучшей стратегии может основываться на введении различных разумных гипотез о поведении окружающей среды.