Учебное пособие: Вычислительная математика
5.4 Метод Симпсона (метод парабол)
5.5 Правило Рунге практической оценки погрешности
Тема 6. Численное решение дифференциальных уравнений
6.1 Постановка задачи Коши
6.2 Метод Эйлера
6.3 Модифицированные методы Эйлера
6.4 Метод Рунге – Кутты
Контрольные задания по курсу “Вычислительные методы”
Указания к выполнению лабораторных работ
Указания к выполнению курсовых работ
Краткие сведения о математиках
Список литературы
Введение
Исследование различных явлений или процессов математическими методами осуществляется с помощью математической модели. Математическая модель представляет собой формализованное описание на языке математики исследуемого объекта. Таким формализованным описанием может быть система линейных, нелинейных или дифференциальных уравнений, система неравенств, определенный интеграл, многочлен с неизвестными коэффициентами и т. д. Математическая модель должна охватывать важнейшие характеристики исследуемого объекта и отражать связи между ними.
После того, как математическая модель составлена, переходят к постановке вычислительной задачи. При этом устанавливают, какие характеристики математической модели являются исходными (входными) данными, какие – параметрами модели, а какие – выходными данными . Проводится анализ полученной задачи с точки зрения существования и единственности решения.
На следующем этапе выбирается метод решения задачи. Во многих конкретных случаях найти решение задачи в явном виде не представляется возможным, так как оно не выражается через элементарные функции. Такие задачи можно решить лишь приближенно. Под вычислительными (численными) методами подразумеваются приближенные процедуры, позволяющие получать решение в виде конкретных числовых значений. Вычислительные методы, как правило, реализуются на ЭВМ. Для решения одной и той же задачи могут быть использованы различные вычислительные методы, поэтому нужно уметь оценивать качество различных методов и эффективность их применения для данной задачи.
Затем для реализации выбранного вычислительного метода составляется алгоритм и программа для ЭВМ. Современному инженеру важно уметь преобразовать задачу к виду, удобному для реализации на ЭВМ и построить алгоритм решения такой задачи.
В настоящее время на рынке программного обеспечения широко представлены как пакеты, реализующие наиболее общие методы решения широкого круга задач (например, Maple, Mathcad, MatLAB), так и пакеты, реализующие методы решения специальных задач (например, задач газовой динамики).
Результаты расчета анализируются и интерпретируются. При необходимости корректируются параметры метода, а иногда математическая модель, и начинается новый цикл решения задачи.
Тема 1. Решение задач вычислительными методами.
Основные понятия
1.1 Погрешность
Существуют четыре источника погрешностей, возникающих в результате численного решения задачи.
1. Математическая модель. Погрешность математической модели связана с ее приближенным описанием реального объекта. Например, если при моделировании экономической системы не учитывать инфляции, а считать цены постоянными, трудно рассчитывать на достоверность результатов. Погрешность математической модели называется неустранимой. Будем в дальнейшем предполагать, что математическая модель фиксирована и ее погрешность учитывать не будем.
2. Исходные данные. Исходные данные, как правило, содержат погрешности, так как они либо неточно измерены, либо являются результатом решения некоторых вспомогательных задач. Например, масса снаряда, производительность оборудования, предполагаемая цена товара и др. Во многих физических и технических задачах погрешность измерений составляет 1 – 10%. Погрешность исходных данных так же, как и погрешность математической модели, считается неустранимой и в дальнейшем учитываться не будет.
3. Метод вычислений. Применяемые для решения задачи методы как правило являются приближенными. Например, заменяют интеграл суммой, функцию – многочленом, производную – разностью и т. д. Погрешность метода необходимо определять для конкретного метода. Обычно ее можно оценить и проконтролировать. Следует выбирать погрешность метода так, чтобы она была не более, чем на порядок меньше неустранимой погрешности. Большая погрешность снижает точность решения, а меньшая требует значительного увеличения объема вычислений.
4. Округление в вычислениях. Погрешность округления возникает из-за того, что вычисления производятся с конечным числом значащих цифр (для ЭВМ это 10 – 12 знаков). Округление производят по следующему правилу: если в старшем из отбрасываемых разрядов стоит цифра меньше пяти, то содержимое сохраняемых разрядов не изменяется; в противном случае в младший сохраняемый разряд добавляется единица с тем же знаком, что и у самого числа. При решении больших задач производятся миллиарды вычислений, но так как погрешности имеют разные знаки, то они частично взаимокомпенсируются.
Различают абсолютную и относительную погрешности. Пусть а – точное, вообще говоря неизвестное числовое значение некоторой величины, а а* - известное приближенное значение этой величины, тогда величину
D (а* ) = | а – а* |
называют абсолютной погрешностью числа а* , а величину
d (а* ) =
– его относительной погрешностью.
При сложении и вычитании складываются абсолютные погрешности, а при делении и умножении – относительные погрешности.
1.2 Корректность