Боковая сторона равнобедренного треугольника - 25 , а высота, опущенная на нее - 24. Найти периметр
Боковая сторона равнобедренного треугольника - 25 , а высота, опущенная на нее - 24. Найти периметр
Ответ(ы) на вопрос:
Гость
нарисуем ΔАВС (АВ=ВС=25см - боковые стороны; АС-основа Δ.).
Проведем из вершины С к стороне АВ высоту. Обозначим её СК. Значит
<СКВ=<СКА=90°, значит
ΔСКВ и ΔСКА прямоугольные.
Рассмотрим ΔСКВ:
ВС=25см-гипотенуза , СК=24см-катет
По теореме Пифагора:
ВС^2=СК^2+КВ^2
КВ^2=ВС^2-СК^2
КВ^2=(25^2) - (24^2)=(25-24)*(25+24)=1*49=49 (я расписана по формуле сокращенного умножения, но можно было и просто на калькулятора посчитать)
КВ=√49=7см
Сторона АВ состоит из двух отрезков на которые её разделяет точка К:
АВ=АК+КВ
АК=АВ-КВ
АК=25-7=18 см
Рассмотрим ΔСКА (АС-гипотенуза; АК=18 см - катет ; СК=24 см- второй катет)
За теоремой Пифагора:
АС^2=АК^2+СК^2
АС^2=18^2+24^2=324+576=900
АС=√900=30 см
Периметр ΔАВС:
Р= АВ+ВС+АС
Р=30+25+25=80 см
Ответ: 80 см
Не нашли ответ?
Похожие вопросы