Боковая сторона равнобедренного треугольника - 25 , а высота, опущенная на нее - 24. Найти периметр

Боковая сторона равнобедренного треугольника - 25 , а высота, опущенная на нее - 24. Найти периметр
Гость
Ответ(ы) на вопрос:
Гость
нарисуем ΔАВС (АВ=ВС=25см - боковые стороны; АС-основа Δ.). Проведем из вершины С к стороне АВ высоту. Обозначим её СК. Значит <СКВ=<СКА=90°, значит ΔСКВ и ΔСКА прямоугольные. Рассмотрим ΔСКВ: ВС=25см-гипотенуза , СК=24см-катет По теореме Пифагора: ВС^2=СК^2+КВ^2 КВ^2=ВС^2-СК^2 КВ^2=(25^2) - (24^2)=(25-24)*(25+24)=1*49=49 (я расписана по формуле сокращенного умножения, но можно было и просто на калькулятора посчитать) КВ=√49=7см Сторона АВ состоит из двух отрезков на которые её разделяет точка К: АВ=АК+КВ АК=АВ-КВ АК=25-7=18 см Рассмотрим ΔСКА (АС-гипотенуза; АК=18 см - катет ; СК=24 см- второй катет) За теоремой Пифагора: АС^2=АК^2+СК^2 АС^2=18^2+24^2=324+576=900 АС=√900=30 см Периметр ΔАВС: Р= АВ+ВС+АС Р=30+25+25=80 см Ответ: 80 см
Не нашли ответ?
Ответить на вопрос
Похожие вопросы