Боковые ребра треугольной пирамиды взаимно перпендикулярны и равны. Боковая поверхность пирамиды равна H.Найдите площадь основания пирамиды.

Боковые ребра треугольной пирамиды взаимно перпендикулярны и равны. Боковая поверхность пирамиды равна H.Найдите площадь основания пирамиды.
Гость
Ответ(ы) на вопрос:
Гость
Тк  все ребра  равны  и углы  при ребрах равны  и прямые.Это  говорит о том что пирамида правильная.Тк все треугольники  боковой  поверхности равны. Тогда в основании  правильный треугольник.боковая  поверхность  cостоит  из  3 равнобедренный  прямоугольных треугольников.Площадь  каждого их них можно выразить  через гипотенузу (cторону основания) S=1/4 *a^2  ,тогда  H=3/4 *a^2 a=sqrt(4H/3)=2*sqrt(H/3) площадь основания площадь равностороннего треугольника.So=a^2*sqrt(3)/4= 4H*sqrt(3)/4*3=H*sqrt(3)/3=H/sqrt(3)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы