Чебурашка составлял палиндромы из букв Ч и Б. Получилось 35 палиндромов. Сколько было букв Ч, если букв Б было 9? (В каждом палиндроме использовались все буквы Ч и все буквы Б.) В качестве ответа укажите одно натуральное число.
Чебурашка составлял палиндромы из букв Ч и Б. Получилось 35 палиндромов. Сколько было букв Ч, если букв Б было 9? (В каждом палиндроме использовались все буквы Ч и все буквы Б.) В качестве ответа укажите одно натуральное число.
Ответ(ы) на вопрос:
Гость
Вообще задачка не стоит своих баллов, она стоит куда дороже
Мы знаем что у нас нечетное число букв, причем что нечетность приходится на букву Б (9)
Все палиндромы длиной во все буквы
Тогда каждый палинром имеет такую схему:
[некий набор альфа]Б[альфа в обратном порядке]
Разных альф может быть тоже 35 и состоит из половины букв Ч и (9-1)/2 = 4 букв Б
Обозначим все колво букв Ч = 2x, а половину - х
Значит у нас тут Перестановки с повторениями, колво которых 35
35 = (x+4)! / (x!4!)
35 * 4! = (x+4)(x+3)(x+2)(x+1)
7 * 5 * 4 * 3 * 2 = (x+4)(x+3)(x+2)(x+1)
можно представить так
7 * 6 *5 * 4 = (x+4)(x+3)(x+2)(x+1)
очевидно что 7 = х+4 т.е.х=3
А букв Ч = 2х = 2*3 = 6
Надеюсь понятно
Не нашли ответ?
Похожие вопросы