Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM
Гость
Ответ(ы) на вопрос:
Гость
                          В                                      Р                           К                                          H   А                      М                    С    медиана делит тр-к на два равновеликих, Sabm=1/2Sabc. АК-медиана тр-ка АВМ и Sabk=1/2Sabm=1/4Sabc   Проводим МНIIKP  и рассмариваем средние линии МН в тр-ке АРС, КР в тр-ке ВМС, откуда следует, что  BP=1/2PC,  Sbkp=1/3Sbmc, а Skpcm=2/3Sbmc=1/3Sabc   Sabk:Skpcm=1/4Sabc 1/3Sabc=0,75 :1  
Не нашли ответ?
Ответить на вопрос
Похожие вопросы