Дан параллелограмм ABCD. Биссектриса угла BAC пересекает сторону BC в точке K, а биссектриса угла ACD пересекает сторону AD в точке P. Докажите, что APCK-параллелограмм

Дан параллелограмм ABCD. Биссектриса угла BAC пересекает сторону BC в точке K, а биссектриса угла ACD пересекает сторону AD в точке P. Докажите, что APCK-параллелограмм
Гость
Ответ(ы) на вопрос:
Гость
Смотри рисунок. Диагональ АС делит параллелограмм АВСД на два равных треугольника. Угол ВАС=углу АСД. Так как их разбивают биссектрисы, то углы ВАК=КАС=АСР=РСД. Возьмем во внимание равные углы КАС и АСР ⇒ АК параллельна РС ( здесь углы КАС и АСР будут внутренними накрест лежащими, АС - секущей). Так как ВС параллельна АД (по свойству параллелограмма), то и КС параллельна АР (как стороны, лежащие на ВС и АД соответственно). Параллелограмм - это четырехугольник, у которого противолежащие стороны параллельны, значит АРСК - параллелограмм.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы