Докажите что четырех угольник MNPQ  является паралеллограммом и найдите его диагонали если M(1;1) N(6;1) P(7;4) Q (2;4) очень нужно выручайте

Докажите что четырех угольник MNPQ  является паралеллограммом и найдите его диагонали если M(1;1) N(6;1) P(7;4) Q (2;4) очень нужно выручайте
Гость
Ответ(ы) на вопрос:
Гость
Сравним длины сторон: NP = √[(7-6)^2 + (4-1)^2] = √(1+9) = √10 MQ = √[(2-1)^2 + (4-1)^2] = √(1+9) = √10 MN = √[(6-1)^2 + (1-1)^2] = 5 PQ = √[(7-2)^2 + (4-4)^2] = 5 MNPQ - параллелограмм, т.к. его противоположные стороны попарно равны. NQ = √[(6-2)^2 + (1-4)^2] = √(16+9) = 5 MP = √[(7-1)^2 + (4-1)^2] = √(36+9) = √45 = 3*√5
Не нашли ответ?
Ответить на вопрос
Похожие вопросы