Дождевая капля радиусом R падает с высоты h. При падении капля пролетает через заряженное облако и приобретает потенциал φ0. Под действием сил кулоновского отталкивания капля разделяется на две одинаковые части, относительные с...
Дождевая капля радиусом R падает с высоты h. При падении капля пролетает через заряженное облако и приобретает потенциал φ0. Под действием сил кулоновского отталкивания капля разделяется на две одинаковые части, относительные скорости которых направлены горизонтально. Какую максимальную скорость может приобрести каждая из капелек в момент достижения поверхности Земли? Сопротивлением воздуха и электростатическим взаимодействием капелек с поверхностью Земли и с заряженным облаком, а также поверхностным натяжением воды можно пренебречь. Плотность воды ρ. Электрическая постоянная ε0, ускорение свободного падения g.
Ответ(ы) на вопрос:
Клевая задача. Максимальная скорость будет в итоге складываться из вертикальной и горизонтальной компонент:
[latex]v= \sqrt{v_y^2+v_x^2} [/latex]
Поскольку падение происходит в гравитационном поле, то вертикальная компонента не связана с параметрами капли и зависит только от высоты падения и напряженности поля (ускорения свободного падения), так что с ней все ясно:
[latex]mgh=\frac{m}{2}v_y^2 =\ \textgreater \ v_y^2=2gh[/latex]
Горизонтальная же компонента зависит от силы расталкивания двух частей одной капли. Скорость, приобретенная половинками исходной капли, полностью определит их кинетическую энергию. А по закону сохранения энергии, вся запасенная электростатическая энергия капли разделится между двумя капельками: частично станет их электростатической энергией и частично перейдет в кинетическую (по горизонтальной составляющей скорости). А значит, нам надо найти разность начальной и конечной электростатической энергии. Вот и все.
Начальная энергия капли равна [latex]E_0=4\pi\epsilon_0 R\frac{\phi_0^2}{2}[/latex]
После разделения капли на две одинаковые их объемчики будут равны половине объема исходной капли, а отсюда находим их радиусы [latex]r[/latex]:
[latex] \frac{4}{3}\pi R^3=2\cdot \frac{4}{3}\pi r^3[/latex]
[latex]r=\frac{R}{ \sqrt[3]{2} }[/latex]
Энергия распределится поровну, поэтому суммарная электростатическая энергия двух новых капель составит:
[latex]E=E_1+E_2=4\pi\epsilon_0 r\frac{\phi^2}{2}+4\pi\epsilon_0 r\frac{\phi^2}{2}=4\pi\epsilon_0 r\phi^2[/latex]
Потенциал маленькой капли зависит от ее заряда и радиуса. Как изменился радиус мы уже знаем, а вот заряд после разделения распределился пополам - части ведь одинаковые. Поэтому
[latex]\phi=\frac{1}{2}\frac{R}{r}\phi_0= \frac{ \sqrt[3]{2} }{2} \phi_0[/latex]
Таким образом, кинетическая энергия, связанная с горизонтальной компонентой скорости, равна
[latex]E_k=\frac{m}{2}v_x^2=E_0-E=4\pi\epsilon_0 R\frac{\phi_0^2}{2}-4\pi\epsilon_0 r\phi^2=4\pi\epsilon_0(R\frac{\phi_0^2}{2}-\frac{R}{ \sqrt[3]{2} }\frac{ (\sqrt[3]{2})^2 }{4}\phi_0^2)[/latex]
[latex]E_0-E=4\pi\epsilon_0\phi_0^2R(\frac{1}{2}-\frac{\sqrt[3]{2}}{4})[/latex]
[latex]m=\rho V=\rho \frac{4}{3}\pi R^3[/latex] - суммарная масса двух частей, разумеется равна массе исходной капли.
Отсюда
[latex]v_x^2=\frac{2}{\rho \frac{4}{3}\pi R^3}4\pi\epsilon_0\phi_0^2R(\frac{1}{2}-\frac{\sqrt[3]{2}}{4})=\frac{6}{\rho R^2}\epsilon_0\phi_0^2(\frac{1}{2}-\frac{\sqrt[3]{2}}{4})[/latex]
[latex]v_x^2=\frac{3\epsilon_0\phi_0^2}{\rho R^2}(1-\frac{\sqrt[3]{2}}{2})[/latex]
Окончательно,
[latex]v= \sqrt{v_y^2+v_x^2} = \sqrt{2gh+\frac{3\epsilon_0\phi_0^2}{\rho R^2}(1-\frac{\sqrt[3]{2}}{2})} [/latex]
Не нашли ответ?
Похожие вопросы