Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. Для первой из них сила притяжения к звезде в 4 раза больше, чем для второй. Каково отношение радиусов орбит перво...
Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. Для первой из них сила притяжения к звезде в 4 раза больше, чем для второй. Каково отношение радиусов орбит первой и второй планеты? (распишите, пожалуйста)
Ответ(ы) на вопрос:
F1 = G*m*M/R1^2
F2=G*m*M/R2^2
4 = F1/F1 = R2^2/R1^2
R2/R1 = 2 ответ радиус орбиты второй планеты в 2 раза больше чем у первой
закон всемирного тяготения F1 = G Mm/( r1) 2, для второй планеты F2=GMm/( r2)2 F1= 4F2, т.е. GMm/ (r1)2 = 4GMm/(r2)2 ,откуда 1/ (r1)2 = 4 (r2)2 извлекаем корень и 1/r1 = 2/ r2 , отсюда r2/r1 =2
Не нашли ответ?
Похожие вопросы