Из пункта А в пункт Б выехал автомобиль "Волга" со скоростью 80км/ч. В тоже время из пункта Б в пункт А ему навстречу выехал автомобиль "Жигули". В 12ч дня машины проехали мимо друг друга. В 12ч 32мин "Волга" прибыла в пункт Б,...
Из пункта А в пункт Б выехал автомобиль "Волга" со скоростью 80км/ч. В тоже время из пункта Б в пункт А ему навстречу выехал автомобиль "Жигули". В 12ч дня машины проехали мимо друг друга. В 12ч 32мин "Волга" прибыла в пункт Б, а ещё через 18 мин "Жигули" прибыли в пункт А. Вычислите скорость "Жигулей".
Ответ(ы) на вопрос:
a - расстояние от А до места встречи.
b - расстояние от Б до места встречи.
x - скорость "Жигулей".
Система:
a/80 = b/x
a = (32 + 18)x
b = 32 * 80
Подставляем a и b в первое уравнение;
получаем:
50x/80 = (32 × 80)/x
50x² = 32 × 80²
x = √4096
x = 64 (км/ч).
Пусть время встречи встречи будет T, а скорость жигулей = х. Волга после встречи пройдет расстояние 80*(32/60) = 42,66 км Жигули его же за 42,66=Т*х
значит Т=42,66/х
Волга до встречи пройдет расстояние 80*Т, а жигули его же пройдут за х*(50/60) значит 80*Т=х*(50/60)
подставляем вместо Т Т=42,66/х
80*42,66/х=х*(50/60)
[latex] x^{2} [/latex]= 80*42,66/(50/60)=4095,36
х=[latex] \sqrt{4095,36} [/latex] = 64 км/час
Не нашли ответ?
Похожие вопросы