Основание пирамиды является параллелограмм, со сторонами 3 и 7 см и 1-ой из диагоналей 6 см. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 4 см. Найдите боковые рёбра пирамиды.
Основание пирамиды является параллелограмм, со сторонами 3 и 7 см и 1-ой из диагоналей 6 см. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 4 см. Найдите боковые рёбра пирамиды.
Ответ(ы) на вопрос:
Гость
файл))))))))))))))))))))))))))))))
Гость
Пусть S - вершина пирамиды SABCD ;
основание ABCD - параллелограмм ;
AB =CD =3 см , BC =AD =7 см , BD =6 см ;
SO ⊥ (ABCD) ,SO =H =4 см ,O - точка пересечения диагоналей .
------
SA =SC -? , SB=SD -?
---
Известно: AC²+BD² = 2(AB²+BC²)
⇒AC =√(2(AB²+BC²) - BD²) =√(2(3²+7²) -6²) =4√5 (см).
Из ΔAOS по теореме Пифагора :
SA =√(AO²+SO²) =√((AC/2)²+SO²)=√(2√5)²+4²) =6 (см).
Аналогично из ΔBOS:
SB =√(BO²+SO²) =√((BD/2)²+SO²)=√(3²+4²) =5 (см).
* * * диагонали параллелограммы в точке пересечения делятся пополам * * *
ответ: SA =SC = 6 см SB=SD =5 см.
Не нашли ответ?
Похожие вопросы