Отрезок АЕ-биссектриса угла А треугольника АВС. Луч АК перпендикулярен АЕ. Докажите, что луч АК-биссектриса внешнего угла треугольника при вершине А.
Отрезок АЕ-биссектриса угла А треугольника АВС. Луч АК перпендикулярен АЕ. Докажите, что луч АК-биссектриса внешнего угла треугольника при вершине А.
Ответ(ы) на вопрос:
Гость
Точка E равноудалена от прямых AD, BC и AB, поскольку она лежит на биссектрисах DE и BE углов ADC и ABC. Значит, E – центр вневписанной окружности треугольника ADB. Поэтому точка E лежит на биссектрисе внешнего угла при вершине A треугольника ABD,
а так как AD – биссектриса угла BAC, то лучи AE и AD делят развёрнутый угол с вершиной A на три равных угла. Следовательно, каждый из них равен 60°, а ∠BAC = 120°.
Не нашли ответ?
Похожие вопросы