ПО КОРДИНАТАМ ВЕРШИН ТРЕУГОЛЬНИКА АВС НАЙТИ. 1) УГОЛ АВС 2) ПИРИМЕТР ТРЕУГОЛЬНИКА 3)УРОВНЕНИЕ ВЫСОТЫ АВ 4) КООРДИНАТЫ ТОЧКИ ПЕРЕСЕЧЕНИЯ МЕДИАН ТРЕУГОЛЬНИКА 5)УРОВНЕНИЕ БИСИКТРИСЫ АМ 6)ПЛОЩАДЬ ТРЕУГОЛЬНИКА 7) А(1,2)В(-1,2)С(-3,0)
ПО КОРДИНАТАМ ВЕРШИН ТРЕУГОЛЬНИКА АВС НАЙТИ. 1) УГОЛ АВС 2) ПИРИМЕТР ТРЕУГОЛЬНИКА 3)УРОВНЕНИЕ ВЫСОТЫ АВ 4) КООРДИНАТЫ ТОЧКИ ПЕРЕСЕЧЕНИЯ МЕДИАН ТРЕУГОЛЬНИКА 5)УРОВНЕНИЕ БИСИКТРИСЫ АМ 6)ПЛОЩАДЬ ТРЕУГОЛЬНИКА 7) А(1,2)В(-1,2)С(-3,0)
Ответ(ы) на вопрос:
Гость
1) Расчет длин сторон:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = 2
BC = √((Хc-Хв)²+(Ус-Ув)²) = 2.828427125
AC = √((Хc-Хa)²+(Ус-Уa)²) = 4.472135955.
Периметр равен 9.30056.
2) Получив длины сторон, по теореме косинусов находим углы треугольника:
Внутренние углы по теореме косинусов:
cos A= АВ²+АС²-ВС² / 2*АВ*АС = 0.894427
A = 0.463648 радиан, A = 26.56505 градусов.
cos В= АВ²+ВС²-АС² / 2*АВ*ВС = -0.707107,
B = 2.356194 радиан, B = 135 градусов.
cos C= АC²+ВС²-АВ² / 2*АC*ВС = 0.94868,
C = 0.321751 радиан, C = 18.43495 градусов.
3) Уравнения высоты АА₂ в виде у = к* х + в: у = -х + 3.
АА₂: (Х-Ха) / (Ус-Ув) = (У-Уа) / (Хв-Хс).
АА₂: 2 Х + 2 У - 6 = 0 или, сократив на 2,: Х + У - 3 = 0.
Уравнение высоты ВВ₂: (Х-Хв) / (Ус-Уа ) = (У-Ув) / (Ха-Хс)
4 Х + 2 У + 0 = 0 или 2Х + У = 0.
у = -2х + 0 или у = -2х.
Уравнение высоты СС₂: (Х-Хс)/(Ув-Уа) = (У-У) / (Ха-Хв)
2 Х + 0 У + 6 = 0 или, сократив на 2,: Х + 3 = 0.
Эта высота совпадает с осью У.
4) Точка пересечения медиан:
x0 = (x1 + x2 + x3)/3 = (1+(-1)+(-3)) / 3 = -1.
y0 = (y1 + y2 + y3)/3 = (2+2+0) / 3 = 4 / 3 = 1,3333.
5) Уравнение биссектрисы АА₃:
АА₃= (((Ув-Уа)/АВ) + (Ус-Уа)/АС ) * Х + (((Ха-Хв)/АВ) + (Ха-Хс)/АС) ) * У + (((Хв*Уа - Ха*Ув)/АВ) + (Хс*Уа - Ха*Ус)/АС) ) = 0.
Подставив значения, получаем:
-0.4472 Х + 1.89443 У - 3.34164 = 0, или разделив на коэффициент перед х: Х - 4.23607 У + 7.47214 = 0.
Уравнение в виде ах + в:
у = 0.236067977 х + 1.763932.
Уравнение биссектрисы ВВ₃:
ВВ₃= -0.7071 Х - 0.29289 У - 0.12132 = 0
или Х + 0.41421 У + 0.17157 = 0.
Уравнение в виде ах + в:
у = -2.414213562 х - 0.414214.
Уравнение биссектрисы СС₃:
СС₃= 1.15432 Х -1.60153 У + 3.46296 = 0
или Х - 1.38743 У + 3 = 0.
6) Площадь треугольника:
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 2.
Не нашли ответ?
Похожие вопросы