Почтовый голубь дважды пролетел из пунка А в пункт В, двигаясь с одной и той же скоростью относительно воздуха.В первом случае,в безветренную погоду,голубь пролетел путь АВ за промежуток времени t1=60 мин. Во втором случае,при ...
Почтовый голубь дважды пролетел из пунка А в пункт В, двигаясь с одной и той же скоростью относительно воздуха.
В первом случае,в безветренную погоду,голубь пролетел путь АВ за промежуток времени t1=60 мин. Во втором случае,при встречном ветре,скорость которого была постоянной,гоубь преодолел этот путь за промежуток времени t2=75 имню Если бы ветер был попутный,то пусть АВ голубь пролетел бы за промежуток t3 равный
Ответ(ы) на вопрос:
Гость
Пусть [latex]v[/latex]-собственная скорость голубя, [latex]u[/latex] - скорость ветра.
в безветренную погоду [latex]S_{AB}=v\cdot t_1=v\cdot 60[/latex]
Когда голубь летит против ветра, его скорость будет равна разности собственной скорости и скорости ветра , тогда [latex]S_{AB}=(v-u)\cdot t_2=(v-u)\cdot 75[/latex]
Когда ветер попутный, то скорость птички будет равна сумме собственной скорости и скорости ветра. тогда [latex]S_{AB}=(v+u)\cdot t_3[/latex]
Рассмотрим первые два уравнения, приравняв их правые части
[latex]v\cdot 60=(v-u)\cdot 75[/latex]
[latex]60v=75v-75u[/latex]
[latex]75u=15v[/latex]
[latex]v=5u[/latex]
Теперь рассмотрим первое и третье уравнение, приравняв их правые части
[latex]v\cdot 60=(v+u)\cdot t_3[/latex]
подставляем полученное условие [latex]v=5u[/latex]
[latex]5u\cdot 60=(5u+u)\cdot t_3[/latex]
[latex]5u\cdot 60=6u\cdot t_3[/latex]
[latex]t_3=50[/latex] мин
Не нашли ответ?
Похожие вопросы