Помогите решить очень нада 1)Найдите объем правильной четырехугольной пирамиды диагональ основания которой равна 8√2 а апофема пирамиды равна 5 см 2)Диагонали осевого сечения цилиндра пересекаются под углом α.Периметр осевого с...

Помогите решить очень нада 1)Найдите объем правильной четырехугольной пирамиды диагональ основания которой равна 8√2 а апофема пирамиды равна 5 см 2)Диагонали осевого сечения цилиндра пересекаются под углом α.Периметр осевого сечения равна p.Знайдить объем цилиндра
Гость
Ответ(ы) на вопрос:
Гость
1) Если диагональ основания пирамиды (это квадрат) равна 8√2, то сторона a равна 8√2*cos 45° = 8√2*(√2/2) = 8 см. So = a² = 8² = 64 см². Высота Н пирамиды равна √(А²-(а/2)²) = √(5²-(8/2)²) = √(25-16) = √9 = 3 см. Тогда V = (1/3)So*H = (1/3)64*3 = 64 см³. 2) Примем диаметр основания цилиндра за Д, а высоту за Н. Н = Д/(tg(α/2)). Осевое сечение цилиндра - прямоугольник.Его периметр р равен:  р = 2(Н+Д) = 2((Д/(tg(α/2)))+Д). Отсюда находим Д = р*(tg(α/2))/(2(1+(tg(α/2)))). Объём цилиндра V = So*H = (πD²/4)*H. Подставим значения Д и Н: [latex]V= \frac{ \pi *p^2*tg^2 \frac{ \alpha }{2} }{4*4(1+tg \frac{ \alpha }{2})^2 } * \frac{p}{2(1+tg \frac{ \alpha }{2)} } [/latex] =[latex] \frac{ \pi *p^3*tg^2 \frac{ \alpha }{2} }{32(1+tg \frac{ \alpha }{2} )^3} .[/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы