ПОМОГИТЕ решить тригонометрические уравнения: 2sin^2x+sinx-1=0 ; 6cos^2x+cosx-1=0 ; 2cos^2x+sinx+1=0

ПОМОГИТЕ решить тригонометрические уравнения: 2sin^2x+sinx-1=0 ; 6cos^2x+cosx-1=0 ; 2cos^2x+sinx+1=0
Гость
Ответ(ы) на вопрос:
Гость
1) Пусть t=sinx, где t€[-1;1], тогда 2t^2+t-1=0 t1=(-1-3)/4=-1 t2=(-1+3)/4=1/2 Вернёмся к замене sinx=-1 x=-Π/2+2Πn, n€Z sinx=1/2 x1=Π/6+2Πm, m€Z x2=5Π/6+2Πm, m€Z Ответ: -Π/2+2Πn, n€Z; Π/6+2Πm, 5Π/6+2Πm, m€Z 2) 6cos^2x+cosx-1=0 Пусть t=cosx, где t€[-1;1], тогда 6t^2+t-1=0 t1=(-1-5)/12=-1/2 t2=(-1+5)/12=1/3 Вернёмся к замене: cosx=-1/2 x=+-arccos(-1/2)+2Πn, n€Z cosx=1/3 x=+-arccos(1/3)+2Πm, m€Z Ответ: +-arccos(-1/2)+2Πn, n€Z; +-arccos(1/3)+2Πm, m€Z 3) 2cos^2x+sinx+1=0 2(1-sin^2x)+sinx+1=0 -2sin^2x+sinx+3=0 Пусть t=sinx, где t€[-1;1], тогда -2t^2+t+3=0 t1=(-1-5)/-4=-1,5 посторонний, т.к. t€[-1;1] t2=(-1+5)/-4=-1 Вернёмся к замене sinx=-1 x=Π/2+2Πn, n€Z Ответ: Π/2+2Πn, n€Z
Не нашли ответ?
Ответить на вопрос
Похожие вопросы