Расстояния от точки пересечения медиан равнобедренного треугольника до сторон равны 8см, 8см, 5см. Найдите стороны треугольника.
Расстояния от точки пересечения медиан равнобедренного треугольника до сторон равны 8см, 8см, 5см. Найдите стороны треугольника.
Ответ(ы) на вопрос:
Медианы делятся точкой пересечения в отношении 2:1. Так как треугольник равнобедренный, то расстояния в 8 см будут до его боковых сторон, а 5 см - до основания. До вершины - 2*5=10 см. В равнобедренном треугольнике медиана на основание - его высота. Обозначив за Х половину длины основания, а за У отрезок боковой стороны, получим из двух прямоугольных треугольников с общей гипотенузой 5^2+X^2=8^2+Y^2. Вторую часть боковой стороны определим из треугольника К=V(10^2-8^2)=6 cm. Из треугольника, где катетом является высота, нахоим второе уравнение - 15^2+X^2=(6+Y)^2. Раскрыв скобки и прибавив по 200 к левой и правой частям первого уравнения, получим 36+12у+y^2=y^2+264, отсюда у=19 см, а подставив в первое уравнение значения у, найдем х=20 см. Тогда стороны равны - 25, 25 и 40 см.
Не нашли ответ?
Похожие вопросы