Ребро куба авсда1в1с1д1 равно а .постройте сечение куба проходящее через точку B1C и середины ребра АД найдите площадь этого сечения

Ребро куба авсда1в1с1д1 равно а .постройте сечение куба проходящее через точку B1C и середины ребра АД найдите площадь этого сечения
Гость
Ответ(ы) на вопрос:
Гость
Плоскость пересекает противоположные грани куба по параллельным прямым. А1Д║В1С. Построим отрезок МК║А1Д. В тр-ке АА1Д МК - средняя линия, значит АМ=А1М и МК=А1Д/2. Диагональ квадрата А1Д=а√2, МК=а√2/2. Тр-ки МА1В1 и СДК равны т.к. А1В1=СД, А1М=КД и оба прямоугольные, значит МВ1=СК. В равнобедренной трапеции B1CКМ проведём высоту МР. В1Р=(В1С-МК)/2=(а√2-а√2/2)/2=а√2/4. В прямоугольном тр-ке МА1В1 МВ1²=А1В1²+МА1²=а²+а²/4=5а²/4. В прямоугольном тр-ке МВ1Р: МР²=МВ1²-В1Р²=(5а²/4)-(2а²/16)=(10а²-а²)/8=9а²/8, МР=3а/2√2=3а√2/4. Площадь трапеции В1СKM: S=МР·(В1С+КМ)/2=3а√2·(а√2+а√2/2)/8=3а√2·3а√2/16=18а²/16=9а²/8(ед²) - это ответ.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы