Сфера радиуса 6 касается плоскости треугольника ABC в центре описанной около него окружности. Найдите расстояние от центра сферы до вершин треугольника, если АВ = 3, АС = 4, ВС = 5.
Сфера радиуса 6 касается плоскости треугольника ABC в центре описанной около него окружности. Найдите расстояние от центра сферы до вершин треугольника, если АВ = 3, АС = 4, ВС = 5.
Ответ(ы) на вопрос:
Гость
Дан треугольник с отношением сторон 3:4:5. Это отношение сторон "египетского" треугольника. ∆ АВС- прямоугольный, АВ и АС - его катеты, ВС - гипотенуза, Н - середина ВС. Центром окружности, описанной вокруг прямоугольного треугольника, является середина его гипотенузы. ВН=СН=5:2=2,5. Обозначим центр сферы О. Н - середина гипотенузы, АН - медиана ∆ АВС, и по свойству медианы прямоугольного треугольника АН=ВН=СН, т.е. все эти точки лежат на описанной окружности. Сфера касается ВС в её середине, радиус ОН сферы касается и, значит, перпендикулярен плоскости ∆ АВС в точке Н, следовательно, перпендикулярен любой прямой, проходящей через Н. Искомые расстояния - наклонные с равными проекциями АН=ВН=СН. Если равны проекции наклонных к плоскости, проведенных из одной точки, то равны и наклонные. ⇒ ОА=ОВ=ОС. По т.Пифагора ОА=√(ОН²+АН²)=√(36+6,25)=6,5 (ед.длины)
Не нашли ответ?
Похожие вопросы