В основании пирамиды MABCD лежит трапеция ABCD, у которой AB=BC=CD=1 и AD=2. Грани MAB и MCD перпендикулярны основанию, а двугранный угол при ребре AD равен 30 градусов. Найдите высоту пирамиды.
В основании пирамиды MABCD лежит трапеция ABCD, у которой AB=BC=CD=1 и AD=2. Грани MAB и MCD перпендикулярны основанию, а двугранный угол при ребре AD равен 30 градусов. Найдите высоту пирамиды.
Ответ(ы) на вопрос:
Линия пересечения плоскостей двух боковых граней - вертикальная прямая.
Она равна высоте пирамиды.
Если через высоту и середину стороны АД провести секущую плоскость, то получим прямоугольный треугольник с углом 30 градусов, где второй катет - это высота треугольника, полученного при продолжении боковых сторон трапеции до пересечения. Она равна (корень из 3).
Тогда высота равна V3 * tg 30 = V3*1/V3 = 1.
Не нашли ответ?
Похожие вопросы