В прямоугольнике ABCD со сторонами AB=4 дм, AD=8 дм проведены биссектрисы двух углов, прилежащих к большей стороне. Определите, на какие части делится площадь прямоугольника этими биссектрисами.

В прямоугольнике ABCD со сторонами AB=4 дм, AD=8 дм проведены биссектрисы двух углов, прилежащих к большей стороне. Определите, на какие части делится площадь прямоугольника этими биссектрисами.
Гость
Ответ(ы) на вопрос:
Гость
Биссектриса AE отсекает от прямоугольника равнобедренный прямоугольный треугольник с катетами AB=BE=4 и площадью (1/2)AB·BE=8. Заметим, кстати, что E является серединой стороны BD⇒вторая биссектриса пересечет BC в той же точке E; она отсечет такой же треугольник, что и первая, то есть его площадь также будет равна 8. Оставшаяся часть будет иметь площадь AB·BC-8-8=16. Ответ: 8;  16;  8
Не нашли ответ?
Ответить на вопрос
Похожие вопросы