В равнобедренном треугольнике ABC медианы пересекаются в точке О. Длина основания A

В равнобедренном треугольнике ABC медианы пересекаются в точке О. Длина основания AC равна 24 см, СО = 15 см. Через точку О проведена прямая L, параллельная отрезку AB. Вычислите длину отрезка прямой L, заключённого между сторонами АС и СВ треугольника АВС.
Гость
Ответ(ы) на вопрос:
Гость
Давай попробуем рассуждать логически. Сейчас буду думать вслух, и одновременно нажимать на кнопки. Если мысль будет вилять, то не обессудь. Попробуем решить треугольник АСО, который типа из соображений симметрии является равнобедренным. Интересует угол АСО. Гляну у себя на абаке, и он подскажет, что сей угол равен 36,87 градусов. Точнее, его косинус равен 0,5 * 24 / 15 = 0,8. Продолжим СО до пересечения со стороной АВ, и точку пересечения назовём Х. Поскольку медианы точкой пересечения делятся в отношении 2:1 (если не ошибаюсь, или поправь меня), то ХС = СО * 1,5 = 15 * 1,5 = 22,5.  Теперь в треугольнике АСХ мы знаем стороны ХС = 22,5 и АС=24, и косинус угла между ними :  0,8 (угол = 36,87 градусов). Значит нам ничто не мешает найти по теореме косинусов третью сторону, то есть АХ. Решим на абаке, и он говорит, что АХ = 14,7732867. Но мы же по условию имеем медианы, значит АВ = 2 * АХ = 29,546573. Теперь, поскольку по условию L параллельна АВ, то старина Фалес по своей теореме подскажет, что L = 2/3 * АВ = 19,6977156. Что-то такой ход мыслей мне самому не нравится. Слишком длинный путь. Но ответ всё-таки представляется верным.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы