В равнобедренном треугольнике ABC основание которого AC, через точку пересечения медиан проведена прямая, параллельно основанию.Эта прямая пересекает стороны AB и BC соответственно в точках K и T. Вычислите длины отрезков, на к...
В равнобедренном треугольнике ABC основание которого AC, через точку пересечения медиан проведена прямая, параллельно основанию.Эта прямая пересекает стороны AB и BC соответственно в точках K и T. Вычислите длины отрезков, на которые точка K делит сторону AB,если KT= 6 см, S ACB=27 см2
Ответ(ы) на вопрос:
В К О Т А М С ВМ-медиана и высота. медианы делятся в соотношении 2 к 1 от вершины, поэтому ВО=2/3ВМ. Треугольник АВС подобен КВТ. коэффициент подобия 2\3. Отсюда АС=КТ *3/2=6*3/2=9. ВМ=2*27:9=6. Из тр-ка АМБ АВ=корень квадратный из 6*6+4.5*4,5=56,25 или это 7.5. КВ=2/3АВ=2/3 *7.5=5, тгда АК=7,5-5=2,5
Не нашли ответ?
Похожие вопросы