В трапеции одна из диагоналей равна 16, а угол, под которым основание трапеции видно из точки пересечения диагоналей, равен 120. Найдите вторую диагональ, если высота трапеции равна 8.

В трапеции одна из диагоналей равна 16, а угол, под которым основание трапеции видно из точки пересечения диагоналей, равен 120. Найдите вторую диагональ, если высота трапеции равна 8.
Гость
Ответ(ы) на вопрос:
Гость
Трапеция ABCD, диагонали пересекаются в точке E, ∠AED=120°, AC=16. Опустим перпендикуляр CF на AC; в прямоугольном треугольнике ACF катет CF равен половине гипотенузы AC⇒∠DAC=30°. Из ΔAED⇒ ∠ADE=180°-120°-30°=30°⇒DE=AE, откуда следует равнобедренность трапеции и равенство ее диагоналей. Если Вам кажется это не совсем очевидным, рассмотрите ΔBEC, подобный равнобедренному ΔAED и поэтому тоже равнобедренный.  А тогда AC=AE+EC=DE+EB=DB. Ответ: 16
Не нашли ответ?
Ответить на вопрос
Похожие вопросы