В треугольнике авс биссектриса угла а делит высоту, проведенную из вершины в в отношении 13:12, считая от точки в. найдите радиус окружности, описанной около треугольника авс, если вс=10

В треугольнике авс биссектриса угла а делит высоту, проведенную из вершины в в отношении 13:12, считая от точки в. найдите радиус окружности, описанной около треугольника авс, если вс=10
Гость
Ответ(ы) на вопрос:
Гость
Рассмотрим треугольник АВД, где ВД - высота из вершины В. По свойству биссектрисы стороны АВ и АД относятся как 13:12, так как сторона ВД разделена биссектрисой в этом соотношении. Тогда косинус угла А равен 12/13, а синус равен √(1-(12/13)²) =  = √(1-144/169) = √(25/169) =  5/13. Радиус окружности, описанной около треугольника авс равен a/(2sin α) = 10/(2*(5/13) = 13 см.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы