В выпуклом четырехугольнике ABCD: BAC=25∘, BCA=50∘,BDC=50∘, BDA=100∘. Найдите величину угола (в градусах) между диагоналями четырехугольника.

В выпуклом четырехугольнике ABCD: BAC=25∘, BCA=50∘,BDC=50∘, BDA=100∘. Найдите величину угола (в градусах) между диагоналями четырехугольника.
Гость
Ответ(ы) на вопрос:
Гость
Пусть О - центр окружности, описанной около треугольника АBC. Тогда ∠BOC=2∠BAC=50°=∠BDC. Значит D лежит на окружности, описанной около треугольника BOC. Аналогично, ∠BOA=2∠BCA=100°=∠BDA. Значит D лежит на окружности, описанной около треугольника BOA, а значит D - одна из двух точек пересечения этих окружностей, которые есть О и B. Очевидно, что D совпадать с B не может, значит D совпадает с О. Т.е. D - центр окружности, описанной около ABC. Отсюда BDC - равнобедренный, ∠DBC=(180°-50°)/2=65° и значит угол между диагоналями ABCD равен 180°-∠DBC-∠BCA=180°-65°-50°=65°.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы