Дипломная работа: Численное решение уравнения Шредингера средствами Java

1.2 Волновые функции в импульсном представлении.

Фурье-образ волновой функции характеризует распределение импульсов в квантовом состоянии . Требуется вывести интегральное уравнение для с Фурье-образом потенциала в качестве ядра.

Решение. Между функциями и имеются два взаимно обратных соотношения.

(2.1)

(2.2)


Если соотношение (2.1) использовать в качестве определения и применить к нему операцию , то с учетом определения 3-мерной -функции,

,

в результате, как нетрудно убедиться, получится обратное соотношение (2.2). Аналогичные соображения использованы ниже при выводе соотношения (2.8).

Положим далее

,(2.3)

тогда для Фурье-образа потенциала будем иметь

(2.4)

Предполагая, что волновая функция удовлетворяет уравнению Шредингера

(2.5)

Подставляя сюда вместо и соответственно выражения (2.1) и (2.3), получаем


В двойном интеграле перейдем от интегрирования по переменной к интегрированию по переменной , а затем эту новую переменную вновь обозначим посредством . Интеграл по обращается в нуль при любом значении лишь в том случае, когда само подынтегральное выражение равно нулю, но тогда

.(2.6)

Это и есть искомое интегральное уравнение с Фурье-образом потенциала в качестве ядра. Конечно, интегральное уравнение (2.6) можно получить только при условии, что Фурье-образ потенциала (2.4) существует; для этого, например, потенциал должен убывать на больших расстояниях по меньшей мере как , где .

Необходимо отметить, что из условия нормировки

(2.7)

следует равенство

.(2.8)

Это можно показать, подставив в (2.7) выражение (2.1) для функции :

.

Если здесь сначала выполнить интегрирование по , то мы без труда получим соотношение (2.8).[2]


2. Методы численного решения нестационарного уравнения Шредингера

2.1 Метод конечных разностей для одномерного нестационарного уравнения Шредингера

В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.

К-во Просмотров: 336
Бесплатно скачать Дипломная работа: Численное решение уравнения Шредингера средствами Java