Дипломная работа: Численное решение уравнения Шредингера средствами Java

(5.3)

и умножается на . После чего вновь преобразуется в импульсное представление


(5.4)

и умножается на . Завершается шаг по времени еще одним преобразованием полученной волновой функции в координатное представление

.(5.5)

Один шаг по времени завершен.

В данной работе этот метод реализован в среде Java, ниже приведены программный блок и полученные графики поведения волновой функции в различные моменты времени.

Важная особенность этого метода заключается в том, что действие каждого из операторов оценивается в их соответствующем локальном представлении.

С методической точки зрения ценность нестационарного подхода состоит в существенно большей наглядности и информативности результатов, по сравнению с результатами решения стационарного уравнения Шредингера. Круг задач, которые могут быть рассмотрены на основе решения нестационарного уравнения Шредингера очень разнообразен.

Для иллюстрации вышесказанного рассмотрим задачу о движении частицы в поле потенциального барьера. Хотя стационарный подход позволяет определить коэффициенты прохождения и отражения частицы он, однако, не позволяет рассмотреть реальную пространственно-временную картину движения частицы через потенциальный барьер, которая является существенно нестационарной. Рассмотрение задачи на основе решения нестационарного уравнения Шредингера позволяет не только сопоставить классический и квантовый подход к проблеме, но и получить ответы на ряд вопросов, представляющих значительный практический интерес (например, длительность процесса туннелирования, скорости прошедших и отраженных частиц и т.д.). Ниже мы приводим результаты решения нестационарного уравнения Шредингера для данной задачи. Начальное состояние частицы задано в виде пакета гауссовой формы, движущегося в направлении области действия потенциала. На графиках представлена временная картина туннелирования такого пакета через потенциальный барьер прямоугольной формы в виде "мгновенных снимков" волнового пакета в разные моменты времени. Как видно, при попадании пакета в область действия потенциала его форма нарушается в результате формирования отраженного волнового пакета и его интерференции с падающим на препятствие пакетом. Через некоторое время формируются два пакета: отраженный и прошедший через препятствие. Движение падающего и отраженного пакета можно сопоставить с движение классической частицы, положение которой совпадает с максимумом в распределении вероятности. В случае протяженного потенциала отраженный пакет "отстает" от отраженной от барьера классической частицы. Физически это связано с тем, что пакет частично проникает в классически запрещенную область, в то время как в классике отражение происходит строго в точке скачка потенциала. Образование же прошедшего пакета представляет собой сугубо квантовый эффект не имеющий классических аналогий.[3]


3. Методы численного решения стационарного уравнения Шредингера

3.1 Метод Нумерова

Рассмотрим решения одномерного стационарного уравнения Шредингера (3.1) частицы, движущейся в одномерном потенциале U(x).

(3.1)

Будем при этом полагать, что его форма имеет потенциала, представленного на рис.1: в точках xmin , xmax потенциал становится бесконечно большим. Это означает, что в точках xmin , xmax расположены вертикальные стенки, а между ними находится яма конечной глубины.

Рисунок 1.

Для удобства дальнейшего решения запишем уравнение Шредингера (3.1) в виде:

(3.2)


Где

(3.3)

С математической точки зрения задача состоит в отыскании собственных функций оператора, отвечающим граничным условиям

(3.4)

и соответствующих собственных значений энергии E.

Так как при и при , , то можно ожидать, что собственному решению данной задачи соответствует собственная функция, осциллирующая в классически разрешенной области движения и экспоненциально затухающим в запрещенных областях, где ,, при , . Так как все состояния частицы в потенциальной яме оказываются связанными (т.е. локализованными в конечной области пространства), спектр энергий является дискретным. Частица, находящаяся в потенциальной яме конечных размеров при , при , имеет дискретный спектр при и непрерывный спектр при .

Традиционно для решении задачи о нахождении собственных значений уравнения Шредингера используется метод пристрелки. Идея метода пристрелки состоит в следующем. Допустим, в качестве искомого значения ищется одно из связанных состояний, поэтому в качестве пробного начального значения энергии выбираем отрицательное собственное значение. Проинтегрируем уравнение Шредингера каким-либо известным численным методом на интервале . По ходу интегрирования от в сторону больших значений сначала вычисляется решение , экспоненциально нарастающее в пределах классически запрещенной области. После перехода через точку поворота , ограничивающую слева область движения разрешенную классической механикой, решение уравнения становится осциллирующим. Если продолжить интегрирование далее за правую точку поворота , то решение становится численно неустойчивым. Это обусловлено тем, что даже при точном выборе собственного значения, для которого выполняется условие , решение в области всегда может содержать некоторую примесь экспоненциально растущего решения, не имеющего физического содержания. Отмеченное обстоятельство является общим правилом: интегрирование по направлению вовнутрь области, запрещенной классической механикой, будет неточным. Следовательно, для каждого значения энергии более разумно вычислить еще одно решение , интегрируя уравнение (3.1) от в сторону уменьшения. Критерием совпадения данного значения энергии является совпадение значений функций и в некоторой промежуточной точке . Обычно в качестве данной точки выбирают левую точку поворота . Так как функции , являются решениями однородного уравнения (3.1), их всегда можно нормировать так, чтобы в точке выполнялось условие . Помимо совпадения значений функций в точке для обеспечения гладкости сшивки решений потребуем совпадения значений их производных

(3.5)


Используя в (17) простейшие левую и правую конечно-разностные аппроксимации производных функций , в точке , находим эквивалентное условие гладкости сшивки решений:

(3.6)

К-во Просмотров: 338
Бесплатно скачать Дипломная работа: Численное решение уравнения Шредингера средствами Java