Дипломная работа: Численное решение уравнения Шредингера средствами Java
Содержание
Введение
1. Уравнение Шредингера и физический смысл его решений
1.1 Волновое уравнение Шредингера
1.2 Волновые функции в импульсном представлении
2. Методы численного решения нестационарного уравнения Шредингера
2.1 Метод конечных разностей для одномерного нестационарного уравнения Шредингера
2.2 Преобразование Фурье
2.3 Метод аппроксимации оператора эволюции (split-operatormethod)
3. Методы численного решения стационарного уравнения Шредингера
3.1 Метод Нумерова
4. Программная реализация численных методов средствами Java
4.1 Обзор языка программирования Java
4.2 Элементы программирования Java 2 используемые в работе
Заключение
Список использованных источников
Введение
Известно, что курс квантовой механики является одним из сложных для восприятия. Это связано не столько с новым и "необычным" математическим аппаратом, сколько прежде всего с трудностью осознания революционных, с позиции классической физики, идей, лежащих в основе квантовой механики и сложностью интерпретации результатов.
В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.
1. Уравнение Шредингера и физический смысл его решений
1.1 Волновое уравнение Шредингера
Одним из основных уравнений квантовой механики является уравнение Шредингера, определяющее изменение состояний квантовых систем с течением времени. Оно записывается в виде
(1.1)
где Н — оператор Гамильтона системы, совпадающий с оператором энергии, если он не зависит от времени. Вид оператора определяется свойствами системы. Для нерелятивистского движения частицы массы в потенциальном поле U(r) оператор действителен и представляется суммой операторов кинетической и потенциальной энергии частицы
(1.2)
Если частица движется в электромагнитном поле, то оператор Гамильтона будет комплексным.
Хотя уравнение (1.1) является уравнением первого порядка по времени, вследствие наличия мнимой единицы оно имеет и периодические решения. Поэтому уравнение Шредингера (1.1) часто называют волновым уравнением Шредингера, а его решение называют волновой функцией, зависящей от времени. Уравнение (1.1) при известном виде оператора Н позволяет определить значение волновой функции в любой последующий момент времени, если известно это значение в начальный момент времени. Таким образом, волновое уравнение Шредингера выражает принцип причинности в квантовой механике.
Волновое уравнение Шредингера может быть получено на основании следующих формальных соображений. В классической механике известно, что если энергия задана как функция координат и импульсов
H,(1.3)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--