Дипломная работа: Численное решение уравнения Шредингера средствами Java

(3.1)

где оператор полной энергии системы. Для одномерного случая


Общее решение уравнения (1) формально можно записать в виде

(3.2)

где - волновая функция системы в момент времени

- оператор эволюции (пропагатор).

Особенностью выражения (3.2) является то, что в показателе экспоненты стоит оператор. Определить действие оператора эволюции на волновую функцию можно, например, разложив ее по собственным функциям оператора . Так, в случае дискретного спектра выражение для волновой функции в произвольный момент времени имеет вид

(3.3)

Аналогичное выражение может быть получено и для непрерывного спектра.

Разложение (3.3) удобно использовать в тех случаях, когда решения стационарного уравнения Шредингера для конкретной задачи являются известными. Но к сожалению круг таких задач очень ограничен. Большинство современных численных методов решения уравнения (3.1) основаны на использовании различных аппроксимаций оператора эволюции . Так, например, разложение оператора эволюции в ряд Тейлора с сохранением первых двух членов дает следующую схему

,(3.4)


здесь номер шага по времени. Существенным недостатком этого алгоритма является необходимость знать волновую функцию в моменты и . Кроме того, для оценки действия оператора на функцию нужно вычислять вторую производную по координате. Простейшая конечно-разностная аппроксимация второй производной

(3.5)

дает неудовлетворительный результат. (См. программный блок 1)[3]

2.2 Преобразование Фурье

Начнем с комплексного ряда Фурье

Рассмотрим случай L.Тогда сумму можно преобразовать в интеграл следующим образом: определим и =g(y).Так как возрастает каждый раз на единицу ,то

где .

Таким образом, полученные выше формулы приобретают вид


(4.1)

Величина называется преобразованием Фурье от и наоборот. Положение множителя довольно произвольно; часто величины и определяют более симметрично:

(4.2)

Выражения (4.1) или (4.2) можно скомбинировать следующим образом:

(4.3)

К-во Просмотров: 337
Бесплатно скачать Дипломная работа: Численное решение уравнения Шредингера средствами Java