Дипломная работа: Элементы комбинаторики
рассмотрим, какие числа получились: 11, 14, 17, 41, 44, 47, 71, 74, 77. То есть всего получилось 9 чисел.
Эта схема действительно похожа на дерево, правда «вверх ногами» и без ствола.
Решение задач.
Итак, давайте решим несколько задач.
Сколько трехзначных чисел можно составить, используя цифры 3 и 5?
Ответ: всего 8 чисел.
В четверг в первом классе должно быть 3 урока: русский язык, математика и физкультура. Сколько различных вариантов расписания можно составить на этот день?
Ответ: всего можно составить 6 вариантов расписания.
Запишите все трехзначные числа, которые можно составить из цифр 0, 5, 9, используя при записи числа каждую цифру только один раз. Сколько всего таких чисел можно составить?
Ответ: всего 4 числа.
А теперь давайте сделаем так: мальчики решают задачу: Данила, Андрей и Коля собрались потренироваться в бросании мяча в баскетбольную корзину. У них только один мяч, и им надо договориться, кто за кем будет бросать мяч в корзину. Сколькими способами они могут занять очередь?
Девочки решают задачу: в костюмерной танцевального кружка имеются зелёные и жёлтые кофты, а также синие, красные и чёрные юбки. Сколько можно из них составить различных костюмов?
Домашнее задание
Откройте дневники и запишите домашнее задание. Решить задачи на карточках.
1. Сколько всего четырехзначных чисел можно составить из цифр 0 и 3?
2. В палатке имеется 3 сорта мороженого: рожок, брикет и эскимо? Наташа и Данил решили купить по одной порции каждого сорта мороженого. Сколько существует вариантов такой покупки?
Итог урока
Урок 4. Правило суммы и правило произведения
Цели:
· познакомить учащихся с правилами произведения и суммы в комбинаторике;
· закрепить правила с помощью решения задач;
Оборудование:
Ход урока
1. Сообщение темы и целей
2. Домашнее задание на карточках
1) Сколькими способами можно выбрать гласную и согласную буквы из слова «ЗДАНИЕ»? (в слове «здание» 3 согласных и 3 гласных буквы. По правилу произведения получаем 3*3=9 способами)
2) Сколькими способами можно указать на шахматной доске два квадрата – белый и черный? Решите эту же задачу, если нет ограничений на цвет квадратов; если надо выбрать два белых квадрата. (На шахматной доске 64 клетки: 32 белых квадрата, 32 черных квадрата. По правилу произведения получаем число выбора двух квадратов: одного черного и одного белого: 32*32=1024.
Если нет ограничений на цвет, то первый квадрат можно выбрать 64 способами, а второй – 63 способами (один квадрат уже выбран), следовательно, 64*63=4032
Если надо выбрать два белых квадрата, то первый квадрат можно выбрать 32 способами, а второй квадрат – 31 способом, поэтому, 32*31=992.