Дипломная работа: Элементы комбинаторики
· закрепить на решении задач число размещений с повторениями, без повторений;
· рассмотреть понятие «кортеж», «факториал».
Оборудование: аншлаги с формулами
Ход урока
1. Сообщение темы и целей
2. Домашнее задание на карточках
1) Сколько букв русского алфавита можно закодировать, используя лишь комбинации точек и тире, содержащие только три знака? ()
2) Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневый переплеты. Сколькими способами он может это сделать? ()
3) В классе 30 человек. Сколькими способами могут быть выбраны из них староста и казначей?
4) В чемпионате по футболу участвуют десять команд. Сколько существует различных возможностей занять командам первые три места?
3. Повторение
Решить задачу: сколькими способами можно обозначить вершины треугольника, используя буквы А,В,С,D,Eи F?(60)
4. Работа по теме .
- Вспомните, что такое кортеж? Кортеж – это множество, в котором порядок элементов строго определен.
- Мы также часто можем встретить задачи, в которых нужно сосчитать число размещений с повторениями
4.1. Понятие «размещений с повторениями»
Множества, из элементов которых составляются кортежи, могут иметь общие элементы. В частности, все они могут совпадать с одним и тем же множеством, состоящим из п -элементов.
Кортежи длины k , составленные из элементов п -множества, называют размещениями с повторениями из п элементов по k .
Число размещений с повторениями находится по формуле:
Вычислите: ;
Решение: = 53 =125; =35 =243.
Понятие «факториал»
Произведение всех чисел от 1 до nназывается факториалом и обозначается n!. В комбинаторике 0!=1 и 1!=!
Задача. Вычислите: 4!; 6!.
4!=4*3*2*1=24
6!=6*5*4*3*2*1=720
- Запишем в тетрадь таблицу
n | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
n! | 2 | 6 | 24 | 120 | 720 | 5040 | 40320 | 362880 | 3628800 | 39916800 |
Правило суммы и произведения – это общие правила решения комбинаторных задач. Кроме них в комбинаторике пользуются формулами для подсчета числа отдельных видов комбинаций, которые встречаются наиболее часто.
Понятие «размещений без повторений»