Дипломная работа: Элементы комбинаторики
Решить задачу: сколько трехзначных чисел можно составить из цифр 0, 5, 8?
Ответ: 18 чисел
4. Работа по новой теме
Правило сложения: если некоторый объект А можно выбрать m способами, а другой объект В можно выбрать n способами, то выбор «либо А, либо В» можно осуществить m + n способами .
Например: на тарелке лежат 5 яблок и 4 апельсина. Сколькими способами можно выбрать один плод?
По условию задачи яблоко можно выбрать пятью способами, апельсин – четырьмя. Так как в задаче речь идет о выборе «либо яблоко, либо апельсин», то его, согласно правилу сложения, можно осуществить 5+4=9 способами.
Задача 1 : сколько трехзначных чисел можно составить из цифр 1,3,5,7, используя в записи числа каждую из них не более одного раза?
Решение: составим дерево возможных вариантов.
Эту задачу можно решить по-другому и намного быстрее, не строя дерева возможных вариантов. Рассуждать будем так. Первую цифру трехзначного числа можно выбрать четырьмя способами. Так как после выбора первой цифры останутся три, то вторую цифру можно выбрать из оставшихся цифр уже тремя способами. Наконец, третью цифру можно выбрать (из оставшихся двух) двумя способами. Следовательно, общее число искомых трехзначных чисел равно произведению 4∙3∙2, т.е. 24.
Сформулируем правило умножения: если объект А можно выбрать m способами и если после каждого такого выбора объект В можно выбрать п способами, то выбор пары (А, В) в указанном порядке можно осуществить m ∙п способами.
Например, решите задачу с помощью правила умножения: сколько пятизначных чисел можно составить из цифр 5, 9, 0, 6?
По правилу умножения получаем: 4∙4∙4∙4=256 чисел.
Правило умножения можно также проиллюстрировать.
Задача 2 : из города А в город В ведут две дороги, из города В в город С – три дороги, из города С до пристани – две дороги. Туристы хотят проехать из города А через города В и С к пристани. Сколькими способами они могут выбрать маршрут?
Решение: Пусть из города А в В туристы могут выбрать двумя способами. Далее в каждом случае они могут проехать из В в С тремя способами. Значит, имеется 2∙3 вариантов маршрута из А в С. Так как из города С на пристань можно попасть двумя способами, то всего существует 2∙3∙2=12 способов выбора туристами маршрута из города А к пристани.
Например: из пункта А в пункт В можно попасть десятью путями, а из пункта В в пункт С – девятью путями. Сколько имеется маршрутов из пункта А в пункт С через пункт В?
Решение: 10∙9=90 маршрутов
Задача 3 : В кафе имеются три первых блюда, пять вторых блюд и два третьих. Сколькими способами посетитель кафе может выбрать обед, состоящий из первого, второго и третьего блюд?
Решение: первое блюдо можно выбрать тремя способами, второе – пятью и третье – двумя, отсюда, по правилу умножения получаем 3∙5∙2=30 способами.
5. Первичное закрепление знаний
1. Сколько различных пятизначных чисел, делящихся на 10 можно составить из цифр 0, 1, 2, 3, 4? Каждую цифру можно использовать в записи только один раз.
2. Сколько пятизначных чисел, делящихся на три, можно составить из цифр 3, 4, 6, 7, 9 если каждое число не содержит одинаковых цифр?
3. Сколько шестизначных чисел можно составить из цифр 4, 5, 6, 7, 8, 9 так, чтобы каждое из них начиналось с комбинации «567»?
4. Сколько пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5, 6 так, чтобы каждое из них начиналось с комбинации «45»?
5. Сколько чётных положительных пятизначных чисел можно получить из цифр 5, 9, 6, 0, так, чтобы цифры в числе не повторялись?
6. Сколько чётных положительных пятизначных чисел можно получить из цифр 1, 2, 3, 4?
6. Итог урока
Урок 5. Самостоятельная работа по темам: «Поиск закономерностей», «Дерево возможных вариантов», «Правило произведения»
Цели: