Дипломная работа: Контрольные задания для заочников по математике
301. -310. Исследовать на сходимость ряд.
¥¥
301. å1/(n – cos26n).302. å (n!) 2/ [(3n + 1) (2n) !]
n=1n=1
¥¥
303. å (2n + cos n) /(3n + sin n).304. å (3n + 2) ! /(10nn2).
n=1n=1
¥¥
305. å ln [(n2+1) /(n2 + n + 1)].306. å (n! n⅓) /(3n + 2).
n=1n=1
¥¥
307. å [4n – 1 (n2 + 5) Ѕ] / [(n–1) !].308. å (3 + 7n) /(5n + n).
n=1n=1
¥¥
ånsin(n – 4/3).310. å [n! (2n + 1) !] / [(3n) !]
n=1n=1
311. -320. Исследовать на абсолютную и условную сходимость ряды.
311. .312.
313. 314.
315. 316.
317. 318.
319. 320.
321. -330. Разложить функцию f(x) в ряд по степеням x.
321. 322.
323. 324.
325. 326.
327. 328.
329. 330.
331. -340. Разложить в ряд Фурье в указанном интервале функцию f(x). Построить график этой функции и график суммы полученного ряда Фурье.