Дипломная работа: Контрольные задания для заочников по математике
195. u = x2 + 4y2 + 2x - 8y,C = 20,A(2, 3),B(1, 4).
196. u = 25x2 + y2 + 10x + 2y, C = 14,A(-1, - 1),B(2, 4).
197. u = 4x2 + 9y2 - 4x - 12y, C = 8,A(2, 0),B(-1, - 1).
198. u = 9x2 + 4y2 - 12x - 4y, C = 8,A(0, 2),B(2, 5).
199. u = x2 + 25y2 - 2x + 20y, C = 165,A(2, - 3),B(2, 1).
200. u = x2 + 4y2 + 2x - 4y,C = 35,A(5, 1),B(5, 4).
201. -210. Значения функции, полученные экспериментально, приведены в таблице. Методом наименьших квадратов найти наилучшую линейную аппроксимацию экспериментальной зависимости. На плоскости (x, y) построить полученную прямую и точки, заданные табл.1.
Таблица 1
201. | x | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
y | - 2.0 | - 0.5 | - 0.5 | 1.0 | 1.5 | 2.4 | 3.2 | 4.0 | |
202. | x | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
y | 6.0 | 4.5 | 4.5 | 2.8 | 1.0 | -0.5 | -1.5 | -2.8 | |
203. | x | 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 |
y | - 5.0 | - 4.0 | -2.5 | -2.5 | -1.0 | - 0.5 | 1.2 | 2.0 | |
204. | x | 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 |
y | 6.5 | 5.2 | 3.5 | 3.5 | 1.6 | 0.2 | - 1.5 | - 2.5 | |
205. | x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
y | - 0.2 | 0 | 0 | 0.1 | 0.15 | 0.25 | 0.3 | 0.4 | |
206. | x | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 |
y | 0.6 | 0.45 | 0.4 | 0.3 | 0.1 | - 0.1 | - 0.2 | - 0.3 | |
207. | x | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
y | - 0.5 | - 0.4 | - 0.25 | - 0.25 | - 0.1 | 0 | 0.1 | 0.2 | |
208. | x | 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 |
y | 2.0 | 3.0 | 6.5 | 7.5 | 10 | 12.5 | 13.5 | 16.5 | |
209. | x | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
y | 2.0 | 0.5 | 0.5 | -1.5 | -1.5 | -3.0 | -4.2 | -5.2 | |
210. | x | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | 1.4 |
y | - 4.0 | -2.5 | - 2.5 | - 1.0 | 0.5 | 0.5 | 2.2 | 3.0 |
ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ
211. -220. Найти неопределенные интегралы.
211. а) ò exp( - 8x3) x2 dx; б) òxtg2xdx; в) ò (6x3 –7x2 – 3x) – 1 dx.
212. а) òtg(5x + 3) dx; б) òln(x2 + 1) dx; в) ò (x3 – 1) (4x3 – x) – 1 dx.
213. а) òctg(2x–3) dx; б) òln2xdx; в) òx2(x3+5x2+ 8x + 4) – 1dx.
214. а) òx – 1cos2(1 + lnx) dx; б) òarcsin2xdx; в) ò (x3 + 1) (x3 – x2) – 1 dx.
215. а) òcos4xsin2xdx; б) òx2arctgxdx; в) ò (x2 + 1) (x3+x2–x–1) –1dx.
____
216. а) ò 2x /Ö1 –4xdx; б) òx – 2 ln 3xdx; в) ò (x4+1) (x3–x2+x–1) – 1 dx.
_
217. а) òx (3x + 2) – 1 dx; б) ò (1 – x) – 1/2arcsinÖxdx; в) òx (x3 – 3x + 2) - 1dx.
218. а) òex(e2x + 4) – 1 dx; б) òxln((1 + x) (1 – x) – 1) dx; в) òx (x3 - 1) - 1dx.
219. a) òe – x(e2x–1) dx; б) òx-5/2 ln2xdx; в) ò 32x/((2x–1) (4x2 – 16x + 15)) dx
_
220. а) ò (3x – 1) (x2 + 9) – 1 dx; б) òeÖxdx; в) òx2/(x3 + x2 + x + 1) dx.
221. -230. Вычислить несобственные интегралы или установить их расходимость.
µ11
221. ò (x2 + 2x + 2) – 1 dx.222. ò x - 2 (1 – x2) - 5/3 dx.223. ò x lnx dx.
- µ00
µµ
224. ò x sinx dx.225. ò x – 2 (x + 1) – 1 dx.
01